中文版 | English
题名

Island Model Genetic Algorithm for Feature Selection in Non-Traditional Credit Risk Evaluation

作者
DOI
发表日期
2019-06-01
ISBN
978-1-7281-2154-3
会议录名称
页码
2771-2778
会议日期
10-13 June 2019
会议地点
Wellington, New zealand
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
As digital infrastructure expands in new regions of the globe, developing ways to include more diverse information in financial decisions is important. However, making use of novel data sources requires developing methods to evaluate credit with diverse and complex datasets with missing information, dynamic patterns and relationships with decision recommendations, and larger feature sets. Feature selection is one approach that can support the application of machine learning to dynamically build models for credit evaluation with complex data. Genetic algorithms (GAs) have been proved to reach good performance in other research, with high computation cost though. In this paper, we review existing GA approaches and test and develop a novel method based on niching and the use of subpopulations with different data for fitness evaluation. This formulation allows less computation cost, even with better prediction performance in feature selection. In further experiments, we compare the proposed GA-based feature selection approaches in four traditional credit datasets and a novel emerging market dataset from China. The results indicate that the advanced GA-based feature selection methods perform more effectively.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Engineering ; Mathematical & Computational Biology
WOS类目
Engineering, Electrical & Electronic ; Mathematical & Computational Biology
WOS记录号
WOS:000502087102101
EI入藏号
20193507373749
EI主题词
Calculations ; Evolutionary algorithms ; Genetic algorithms ; Learning systems ; Machine learning ; Risk assessment
EI分类号
Accidents and Accident Prevention:914.1 ; Mathematics:921
Scopus记录号
2-s2.0-85071317263
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790057
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/45371
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Liu,Yue,Ghandar,Adam,Theodoropoulos,Georgios. Island Model Genetic Algorithm for Feature Selection in Non-Traditional Credit Risk Evaluation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:2771-2778.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Yue]的文章
[Ghandar,Adam]的文章
[Theodoropoulos,Georgios]的文章
百度学术
百度学术中相似的文章
[Liu,Yue]的文章
[Ghandar,Adam]的文章
[Theodoropoulos,Georgios]的文章
必应学术
必应学术中相似的文章
[Liu,Yue]的文章
[Ghandar,Adam]的文章
[Theodoropoulos,Georgios]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。