中文版 | English
题名

High-Resolution Positivity and Asymptotic Preserving Numerical Methods for Chemotaxis and Related Models

作者
通讯作者Chertock,Alina
发表日期
2019
ISBN
978-3-030-20296-5(print) ; 978-3-030-20297-2(online)
来源专著
出版地
Switzerland
出版者
卷号
2
页码
109-148
摘要

Many microorganisms exhibit a special pattern formation at the presence of a chemoattractant, food, light, or areas with high oxygen concentration. Collective cell movement can be described by a system of nonlinear PDEs on both macroscopic and microscopic levels. The classical PDE chemotaxis model is the Patlak-Keller-Segel system, which consists of a convection-diffusion equation for the cell density and a reaction-diffusion equation for the chemoattractant concentration. At the cellular (microscopic) level, a multiscale chemotaxis models can be used. These models are based on a combination of the macroscopic evolution equation for chemoattractant and microscopic models for cell evolution. The latter is governed by a Boltzmann-type kinetic equation with a local turning kernel operator that describes the velocity change of the cells. A common property of the chemotaxis systems is their ability to model a concentration phenomenon that mathematically results in solutions rapidly growing in small neighborhoods of concentration points/curves. The solutions may blow up or may exhibit a very singular, spiky behavior. In either case, capturing such singular solutions numerically is a challenging problem and the use of higher-order methods and/or adaptive strategies is often necessary. In addition, positivity preserving is an absolutely crucial property a good numerical method used to simulate chemotaxis should satisfy: this is the only way to guarantee a nonlinear stability of the method. For kinetic chemotaxis systems, it is also essential that numerical methods provide a consistent and stable discretization in certain asymptotic regimes. In this paper, we review some of the recent advances in developing of high-resolution finite-volume and finite-difference numerical methods that possess the aforementioned properties of the chemotaxis-type systems.

ISSN
2164-3679
EISSN
2164-3725
WOS记录号
WOS:000517189900005
Scopus记录号
2-s2.0-85071358223
DOI
相关链接[Scopus记录]
语种
英语
收录类别
学校署名
其他
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型著作章节
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/45385
专题理学院_数学系
作者单位
1.Department of Mathematics and Center for Research in Scientific Computation,North Carolina State University,Raleigh,United States
2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,China
3.Mathematics Department,Tulane University,New Orleans,United States
推荐引用方式
GB/T 7714
Chertock,Alina,Kurganov,Alexander. High-Resolution Positivity and Asymptotic Preserving Numerical Methods for Chemotaxis and Related Models. Switzerland:Birkhäuser, Cham,2019:109-148.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chertock,Alina]的文章
[Kurganov,Alexander]的文章
百度学术
百度学术中相似的文章
[Chertock,Alina]的文章
[Kurganov,Alexander]的文章
必应学术
必应学术中相似的文章
[Chertock,Alina]的文章
[Kurganov,Alexander]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。