题名 | Learning to Predict Stability of Visual Features |
作者 | |
DOI | |
发表日期 | 2022
|
ISSN | 1948-9439
|
ISBN | 978-1-6654-7897-7
|
会议录名称 | |
页码 | 5545-5550
|
会议日期 | 15-17 Aug. 2022
|
会议地点 | Hefei, China
|
摘要 | Visual SLAM usually stores many features and descriptors in the mapping phase. In the case of long-term visual SLAM, however, a large amount of the features in the map are unstable. In this paper, we propose a new method to predict the cross-seasonal stability of visual features. Our method is easy to incorporate with the mapping phase and retains those visual features with high repeatability, an essential property in the face of irregular environmental changes. We train the network and conduct experiments on a long-term outdoor data set. The experimental results show that our method can maintain a good prediction in different environments. |
关键词 | |
学校署名 | 其他
|
相关链接 | [IEEE记录] |
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10033807 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/460154 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China 2.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Haihua Zou,Xubin Lin,Li He,et al. Learning to Predict Stability of Visual Features[C],2022:5545-5550.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论