题名 | ZEBRAFISH KCNA3 AND RBFOX1 MUTANTS PROVIDE NEW INSIGHTS INTO ATTENTION-DEFICIT/HYPERACTIVITY DISORDER |
姓名 | |
姓名拼音 | ZHANG Na
|
学号 | 11855011
|
学位类型 | 博士
|
学位专业 | 神经科学
|
导师 | |
导师单位 | 生物系
|
外机构导师 | 宫知远
|
外机构导师单位 | 新加坡国立大学
|
论文答辩日期 | 2022-11-29
|
论文提交日期 | 2023-02-21
|
学位授予单位 | 新加坡国立大学
|
学位授予地点 | 新加坡
|
摘要 | The attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder, with a prevalence of 6.3% in children and adolescent population of China. The main clinical manifestations of ADHD patients are commonly known as the inattention and/or hyperactivity and impulsivity, the so-called core diagnostic symptom (DSM-V, 2013), but mounting evidence have also indicated that the learning deficiency is another key feature of ADHD. ADHD is a complex disorder with varied phenotypes, complex etiology and wide-ranging heterogeneity. The genetic risks for ADHD are thus associated with numerous candidate genes with a wide spectrum of biological functions. Furthermore, ADHD is often a comorbidity of many psychiatric disorders including the autism spectrum disorder. The complexity of the disorder and variety of ADHD genetic status apparently have made ADHD diagnosis and treatment quite challenging. Therefore, identifying some common features of cognition, memory, behavior, candidate gene SNPs or expression profiles of ADHD patients is of great importance for the therapeutic purpose. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2018
|
学位授予年份 | 2022-12
|
参考文献列表 | Ahmad, F., & Richardson, M. K. (2013). Exploratory behavior in the open field test adapted for larval zebrafish: impact of environmental complexity. Behavioral processes, 92, 88–98.Ahmed, N. Y., Knowles, R., & Dehorter, N. (2019). New Insights into Cholinergic Neuron Diversity. Frontiers in molecular neuroscience, 12, 204. Alten, B., Guzikowski, N. J., Zurawski, Z., Hamm, H. E., & Kavalali, E. T. (2022). Presynaptic mechanisms underlying GABAB-receptor-mediated inhibition of spontaneous neurotransmitter release. Cell reports, 38(3), 110255. Alten, B., Zhou, Q., Shin, O. H., Esquivies, L., Lin, P. Y., White, K. I., Sun, R., Chung, W. K., Monteggia, L. M., Brunger, A. T., & Kavalali, E. T. (2021). Role of Aberrant Spontaneous Neurotransmission in SNAP25-Associated Encephalopathies. Neuron, 109(1), 59–72. e5. Andrade, A., Brennecke, A., Mallat, S., Brown, J., Gomez-Rivadeneira, J., Czepiel, N., & Londrigan, L. (2019). Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. International journal of molecular sciences, 20(14), 3537. Antoine, M. W., Hübner, C. A., Arezzo, J. C., & Hébert, J. M. (2013). A causative link between inner ear defects and long-term striatal dysfunction. Science, 341(6150), 1120–1123. Antoine, M. W., Vijayakumar, S., McKeehan, N., Jones, S. M., & Hébert, J. M. (2017). The Severity of Vestibular Dysfunction in Deafness as a Determinant of Comorbid Hyperactivity or Anxiety. The Journal of neuroscience: the official journal of the Society for Neuroscience, 37(20), 5144–5154.Antonucci, F., Corradini, I., Fossati, G., Tomasoni, R., Menna, E., & Matteoli, M. (2016). SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions. Frontiers in synaptic neuroscience, 8, 7.Antshel, K. M., & Russo, N. (2019). Autism Spectrum Disorders and ADHD: Overlapping Phenomenology, Diagnostic Issues, and Treatment Considerations. Current psychiatry reports, 21(5), 34.Arabacı, G., & Parris, B. A. (2020). Inattention and task switching performance: the role of predictability, working memory load and goal neglect. Psychological research, 84(8), 2090–2110.Arcos-Burgos, M., & Muenke, M. (2010). Toward a better understanding of ADHD: LPHN3 gene variants and the susceptibility to develop ADHD. Attention deficit and hyperactivity disorders, 2(3), 139–147.Arias-Vásquez, A., Altink, M. E., Rommelse, N. N., Slaats-Willemse, D. I., Buschgens, C. J., Fliers, E. A., Faraone, S. V., Sergeant, J. A., Oosterlaan, J., Franke, B., & Buitelaar, J. K. (2011). CDH13 is associated with working memory performance in attention deficit/hyperactivity disorder. Genes, brain, and behavior, 10(8), 844–851. Ashitani, M., Ueno, C., Doi, T., Kinoshita, T., & Tomoda, K. (2011). Clinical features of functional hearing loss with inattention problem in Japanese children. International journal of pediatric otorhinolaryngology, 75(11), 1431–1435. Bakos, J., Srancikova, A., Havranek, T., & Bacova, Z. (2018). Molecular Mechanisms of Oxytocin Signaling at the Synaptic Connection. Neural plasticity, 2018, 4864107.Bark, I. C., Hahn, K. M., Ryabinin, A. E., & Wilson, M. C. (1995). Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. Proceedings of the National Academy of Sciences of the United States of America, 92(5), 1510–1514. Batista, A., Martínez, J. C., & Hengst, U. (2017). Intra-axonal Synthesis of SNAP25 Is Required for the Formation of Presynaptic Terminals. Cell reports, 20(13), 3085–3098. Belzung, C., & Lemoine, M. (2011). Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biology of mood & anxiety disorders, 1(1), 9.Bergeron, S. A., Carrier, N., Li, G. H., Ahn, S., & Burgess, H. A. (2015). Gsx1 expression defines neurons required for prepulse inhibition. Molecular psychiatry, 20(8), 974–985. Bertling, E., Englund, J., Minkeviciene, R., Koskinen, M., Segerstråle, M., Castrén, E., Taira, T., & Hotulainen, P. (2016). Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity. The Journal of neuroscience: the official journal of the Society for Neuroscience, 36(19), 5299–5313.Blaser, R. E., Chadwick, L., & McGinnis, G. C. (2010). Behavioral measures of anxiety in zebrafish (Danio rerio). Behavioral brain research, 208(1), 56–62. Blaser, R. E., & Rosemberg, D. B. (2012). Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PloS one, 7(5), e36931. Brandt, A., Khimich, D., & Moser, T. (2005). Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. The Journal of neuroscience: the official journal of the Society for Neuroscience, 25(50), 11577–11585.Bricaud, O., Chaar, V., Dambly-Chaudière, C., & Ghysen, A. (2001). Early efferent innervation of the zebrafish lateral line. The Journal of comparative neurology, 434(3), 253–261. Brun, N. R., Panlilio, J. M., Zhang, K., Zhao, Y., Ivashkin, E., Stegeman, J. J., & Goldstone, J. V. (2021). Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish. Communications biology, 4(1), 1129. Burgess, H. A., & Granato, M. (2007). Sensorimotor gating in larval zebrafish. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(18), 4984–4994.Camarata, S., Miller, L. J., & Wallace, M. T. (2020). Evaluating Sensory Integration/Sensory Processing Treatment: Issues and Analysis. Frontiers in integrative neuroscience, 14, 556660.Casanovas, S., Schlichtholz, L., Mühlbauer, S., Dewi, S., Schüle, M., Strand, D., Strand, S., Zografidou, L., & Winter, J. (2020). Rbfox1 Is Expressed in the Mouse Brain in the Form of Multiple Transcript Variants and Contains Functional E Boxes in Its Alternative Promoters. Frontiers in molecular neuroscience, 13, 66. Chen, L., Yang, X., Zhou, X., Wang, C., Gong, X., Chen, B., & Chen, Y. (2015). Hyperactivity and impaired attention in Gamma aminobutyric acid transporter subtype 1 gene knockout mice. Acta neuropsychiatric, 27(6), 368–374. Chen, W., Shen, Z., Asteriti, S., Chen, Z., Ye, F., Sun, Z., Wan, J., Montell, C., Hardie, R. C., Liu, W., & Zhang, M. (2021). Calmodulin binds to Drosophila TRP with an unexpected mode. Structure, 29(4), 330–344.e4. Conboy J. G. (2017). Developmental regulation of RNA processing by Rbfox proteins. Wiley interdisciplinary reviews. RNA, 8(2), 10.1002/wrna.1398.Corley, M., Burns, M. C., & Yeo, G. W. (2020). How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Molecular cell, 78(1), 9–29. Corradini, I., Verderio, C., Sala, M., Wilson, M. C., & Matteoli, M. (2009). SNAP-25 in neuropsychiatric disorders. Annals of the New York Academy of Sciences, 1152, 93–99.Cortese S. (2020). Pharmacologic Treatment of Attention Deficit-Hyperactivity Disorder. The New England journal of medicine, 383(11), 1050–1056. Cross-Disorder Group of the Psychiatric Genomics Consortium (2019). Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 179(7), 1469–1482.e11. Dark, C., Williams, C., Bellgrove, M. A., Hawi, Z., & Bryson-Richardson, R. J. (2020). Functional validation of CHMP7 as an ADHD risk gene. Translational psychiatry, 10(1), 385.Daraio, T., Valladolid-Acebes, I., Brismar, K., & Bark, C. (2018). SNAP-25a and SNAP-25b differently mediate interactions with Munc18-1 and Gβγ subunits. Neuroscience letters, 674, 75–80. Dautan, D., Hacioğlu Bay, H., Bolam, J. P., Gerdjikov, T. V., & Mena-Segovia, J. (2016). Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis. Frontiers in neuroanatomy, 10, 1. DeCarlo, D. K., Swanson, M., McGwin, G., Visscher, K., & Owsley, C. (2016). ADHD and Vision Problems in the National Survey of Children's Health. Optometry and vision science: official publication of the American Academy of Optometry, 93(5), 459–465.de Heering, A., Dormal, G., Pelland, M., Lewis, T., Maurer, D., & Collignon, O. (2016). A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention. Current biology: CB, 26(22), 3101–3105. Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., Baldursson, G., Belliveau, R., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, M., Goldstein, J. I., Grasby, K. L., Grove, J., Gudmundsson, O. O., … Neale, B. M. (2019). Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature genetics, 51(1), 63–75. Dent, E. W., Merriam, E. B., & Hu, X. (2011). The dynamic cytoskeleton: backbone of dendritic spine plasticity. Current opinion in neurobiology, 21(1), 175–181. Dunn, T. W., Gebhardt, C., Naumann, E. A., Riegler, C., Ahrens, M. B., Engert, F., & Del Bene, F. (2016). Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish. Neuron, 89(3), 613–628. Dwivedi, S., Medishetti, R., Rani, R., Sevilimedu, A., Kulkarni, P., & Yogeeswari, P. (2019). Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism. Journal of pharmacological and toxicological methods, 95, 56–65. Elia, J., Glessner, J. T., Wang, K., Takahashi, N., Shtir, C. J., Hadley, D., Sleiman, P. M., Zhang, H., Kim, C. E., Robison, R., Lyon, G. J., Flory, J. H., Bradfield, J. P., Imielinski, M., Hou, C., Frackelton, E. C., Chiavacci, R. M., Sakurai, T., Rabin, C., Middleton, F. A., … Hakonarson, H. (2011). Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature genetics, 44(1), 78–84. English, B. A., Hahn, M. K., Gizer, I. R., Mazei-Robison, M., Steele, A., Kurnik, D. M., Stein, M. A., Waldman, I. D., & Blakely, R. D. (2009). Choline transporter gene variation is associated with attention-deficit hyperactivity disorder. Journal of neurodevelopmental disorders, 1(4), 252–263.Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive Architecture of Working Memory. Neuron, 88(1), 33–46. Fadool, D. A., Tucker, K., Perkins, R., Fasciani, G., Thompson, R. N., Parsons, A. D., Overton, J. M., Koni, P. A., Flavell, R. A., & Kaczmarek, L. K. (2004). Kv1.3 channel gene-targeted deletion produces "Super-Smeller Mice" with altered glomeruli, interacting scaffolding proteins, and biophysics. Neuron, 41(3), 389–404. Faraone S. V. (2000). Genetics of childhood disorders: XX. ADHD, Part 4: is ADHD genetically heterogeneous? Journal of the American Academy of Child and Adolescent Psychiatry, 39(11), 1455–1457. Faraone, S. V., & Larsson, H. (2019). Genetics of attention deficit hyperactivity disorder. Molecular psychiatry, 24(4), 562–575. Faraone, S. V., Perlis, R. H., Doyle, A. E., Smoller, J. W., Goralnick, J. J., Holmgren, M. A., & Sklar, P. (2005). Molecular genetics of attention-deficit/hyperactivity disorder. Biological psychiatry, 57(11), 1313–1323. Favre-Bulle, I. A., Vanwalleghem, G., Taylor, M. A., Rubinsztein-Dunlop, H., & Scott, E. K. (2018). Cellular-Resolution Imaging of Vestibular Processing across the Larval Zebrafish Brain. Current biology: CB, 28(23), 3711–3722.e3. Fontana, B. D., Franscescon, F., Rosemberg, D. B., Norton, W., Kalueff, A. V., & Parker, M. O. (2019). Zebrafish models for attention deficit hyperactivity disorder (ADHD). Neuroscience and biobehavioral reviews, 100, 9–18.Franke, B., Vasquez, A. A., Johansson, S., Hoogman, M., Romanos, J., Boreatti-Hümmer, A., Heine, M., Jacob, C. P., Lesch, K. P., Casas, M., Ribasés, M., Bosch, R., Sánchez-Mora, C., Gómez-Barros, N., Fernàndez-Castillo, N., Bayés, M., Halmøy, A., Halleland, H., Landaas, E. T., Fasmer, O. B., … Reif, A. (2010). Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 35(3), 656–664.Gandal, M. J., Zhang, P., Hadjimichael, E., Walker, R. L., Chen, C., Liu, S., Won, H., van Bakel, H., Varghese, M., Wang, Y., Shieh, A. W., Haney, J., Parhami, S., Belmont, J., Kim, M., Moran Losada, P., Khan, Z., Mleczko, J., Xia, Y., Dai, R., … Geschwind, D. H. (2018). Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science (New York, N.Y.), 362(6420), eaat8127. Gao, Q., Liu, L., Chen, Y., Li, H., Yang, L., Wang, Y., & Qian, Q. (2015). Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Progress in neuro-psychopharmacology & biological psychiatry, 57, 132–139. Gehman, L. T., Stoilov, P., Maguire, J., Damianov, A., Lin, C. H., Shiue, L., Ares, M., Jr, Mody, I., & Black, D. L. (2011). The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nature genetics, 43(7), 706–711. Ge, S., Pradhan, D. A., Ming, G. L., & Song, H. (2007). GABA sets the tempo for activity-dependent adult neurogenesis. Trends in neurosciences, 30(1), 1–8. Ghanizadeh, A., Bahrani, M., Miri, R., & Sahraian, A. (2012). Smell identification function in children with attention deficit hyperactivity disorder. Psychiatry investigation, 9(2), 150–153. Gong, R., Ding, C., Hu, J., Lu, Y., Liu, F., Mann, E., Xu, F., Cohen, M. B., & Luo, M. (2011). Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science, 333(6049), 1642–1646. Gopaul, K. R., Irfan, M., Miry, O., Vose, L. R., Moghadam, A., Subah, G., Hökfelt, T., Bark, C., & Stanton, P. K. (2020). Developmental Time Course of SNAP-25 Isoforms Regulate Hippocampal Long-Term Synaptic Plasticity and Hippocampus-Dependent Learning. International journal of molecular sciences, 21(4), 1448. Griebel, G., Pichat, P., Boulay, D., Naimoli, V., Potestio, L., Featherstone, R., Sahni, S., Defex, H., Desvignes, C., Slowinski, F., Vigé, X., Bergis, O. E., Sher, R., Kosley, R., Kongsamut, S., Black, M. D., & Varty, G. B. (2016). The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia. Scientific reports, 6, 35320.Guerreiro, M., Putzar, L., & Röder, B. (2016). Persisting Cross-Modal Changes in Sight-Recovery Individuals Modulate Visual Perception. Current biology: CB, 26(22), 3096–3100. Guo, W., Fan, S., Xiao, D., Dong, H., Xu, G., Wan, Z., Ma, Y., Wang, Z., Xue, T., Zhou, Y., Li, Y., & Xiong, W. (2021). A Brainstem reticulotegmental neural ensemble drives acoustic startle reflexes. Nature communications, 12(1), 6403.Haehnel-Taguchi, M., Fernandes, A. M., Böhler, M., Schmitt, I., Tittel, L., & Driever, W. (2018). Projections of the Diencephalospinal Dopaminergic System to Peripheral Sense Organs in Larval Zebrafish (Danio rerio). Frontiers in neuroanatomy, 12, 20. Hall, Z. J., & Tropepe, V. (2018). Movement maintains forebrain neurogenesis via peripheral neural feedback in larval zebrafish. eLife, 7, e31045. Hamada, N., Ito, H., Iwamoto, I., Morishita, R., Tabata, H., & Nagata, K. (2015). Role of the cytoplasmic isoform of RBFOX1/A2BP1 in establishing the architecture of the developing cerebral cortex. Molecular autism, 6, 56.Hamling, K. R., & Schoppik, D. (2018). Sensory Gating: Cellular Substrates of Surprise. Current biology: CB, 28(16), R871–R873.Hawi, Z., Cummins, T. D., Tong, J., Johnson, B., Lau, R., Samarrai, W., & Bellgrove, M. A. (2015). The molecular genetic architecture of attention deficit hyperactivity disorder. Molecular psychiatry, 20(3), 289–297. Higley, M. J., & Picciotto, M. R. (2014). Neuromodulation by acetylcholine: examples from schizophrenia and depression. Current opinion in neurobiology, 29, 88–95.Hiraoka, Y., Sugiyama, K., Nagaoka, D., Tsutsui-Kimura, I., Tanaka, K. F., & Tanaka, K. (2021). Mice with reduced glutamate transporter GLT1 expression exhibit behaviors related to attention-deficit/hyperactivity disorder. Biochemical and biophysical research communications, 567, 161–165. Hoshijima, K., Jurynec, M. J., Klatt Shaw, D., Jacobi, A. M., Behlke, M. A., & Grunwald, D. J. (2019). Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish. Developmental cell, 51(5), 645–657.e4. Hoffman, E. J., Turner, K. J., Fernandez, J. M., Cifuentes, D., Ghosh, M., Ijaz, S., Jain, R. A., Kubo, F., Bill, B. R., Baier, H., Granato, M., Barresi, M. J., Wilson, S. W., Rihel, J., State, M. W., & Giraldez, A. J. (2016). Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron, 89(4), 725–733. Huang, J., Zhong, Z., Wang, M., Chen, X., Tan, Y., Zhang, S., He, W., He, X., Huang, G., Lu, H., Wu, P., Che, Y., Yan, Y. L., Postlethwait, J. H., Chen, W., & Wang, H. (2015). Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. The Journal of neuroscience: the official journal of the Society for Neuroscience, 35(6), 2572–2587. Huang, X., Wang, M., Zhang, Q., Chen, X., & Wu, J. (2019). The role of glutamate receptors in attention-deficit/hyperactivity disorder: From physiology to disease. American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics, 180(4), 272–286. Husain M. (2019). Visual Attention: What Inattention Reveals about the Brain. Current biology: CB, 29(7), R262–R264. Hu, Z., Xiao, X., Zhang, Z., & Li, M. (2019). Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Molecular psychiatry, 24(10), 1400–1414. Iijima, T., & Yoshimura, T. (2019). A Perspective on the Role of Dynamic Alternative RNA Splicing in the Development, Specification, and Function of Axon Initial Segment. Frontiers in molecular neuroscience, 12, 295.Irfan, M., Gopaul, K. R., Miry, O., Hökfelt, T., Stanton, P. K., & Bark, C. (2019). SNAP-25 isoforms differentially regulate synaptic transmission and long-term synaptic plasticity at central synapses. Scientific reports, 9(1), 6403.Isaac, V., Olmedo, D., Aboitiz, F., & Delano, P. H. (2017). Altered Cervical Vestibular-Evoked Myogenic Potential in Children with Attention Deficit and Hyperactivity Disorder. Frontiers in neurology, 8, 90. Jacko, M., Weyn-Vanhentenryck, S. M., Smerdon, J. W., Yan, R., Feng, H., Williams, D. J., Pai, J., Xu, K., Wichterle, H., & Zhang, C. (2018). Rbfox Splicing Factors Promote Neuronal Maturation and Axon Initial Segment Assembly. Neuron, 97(4), 853–868.e6. Jansiewicz, E. M., Newschaffer, C. J., Denckla, M. B., & Mostofsky, S. H. (2004). Impaired habituation in children with attention deficit hyperactivity disorder. Cognitive and behavioral neurology: official journal of the Society for Behavioral and Cognitive Neurology, 17(1), 1–8. Johansson, J. U., Ericsson, J., Janson, J., Beraki, S., Stanić, D., Mandic, S. A., Wikström, M. A., Hökfelt, T., Ogren, S. O., Rozell, B., Berggren, P. O., & Bark, C. (2008). An ancient duplication of exon 5 in the Snap25 gene is required for complex neuronal development/function. PLoS genetics, 4(11), e1000278. Kalueff, A. V., Stewart, A. M., & Gerlai, R. (2014). Zebrafish as an emerging model for studying complex brain disorders. Trends in pharmacological sciences, 35(2), 63–75. Karvat, G., & Kimchi, T. (2014). Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 39(4), 831–840. Kavalali E. T. (2015). The mechanisms and functions of spontaneous neurotransmitter release. Nature reviews. Neuroscience, 16(1), 5–16. Keen, E. C., & Hudspeth, A. J. (2006). Transfer characteristics of the hair cell's afferent synapse. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5537–5542.Kepler, L. D., McDiarmid, T. A., & Rankin, C. H. (2020). Habituation in high-throughput genetic model organisms as a tool to investigate the mechanisms of neurodevelopmental disorders. Neurobiology of learning and memory, 171, 107208.Klöckner, C., Sticht, H., Zacher, P., Popp, B., Babcock, H. E., Bakker, D. P., Barwick, K., Bonfert, M. V., Bönnemann, C. G., Brilstra, E. H., Care4Rare Canada Consortium, Chung, W. K., Clarke, A. J., Devine, P., Donkervoort, S., Fraser, J. L., Friedman, J., Gates, A., Ghoumid, J., Hobson, E., … Platzer, K. (2021). De novo variants in SNAP25 cause an early-onset developmental and epileptic encephalopathy. Genetics in medicine: official journal of the American College of Medical Genetics, 23(4), 653–660. Konietzny, A., Bär, J., & Mikhaylova, M. (2017). Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations. Frontiers in cellular neuroscience, 11, 147. Kraus, N., & White-Schwoch, T. (2015). Unraveling the Biology of Auditory Learning: A Cognitive-Sensorimotor-Reward Framework. Trends in cognitive sciences, 19(11), 642–654. Krol, A., Wimmer, R. D., Halassa, M. M., & Feng, G. (2018). Thalamic Reticular Dysfunction as a Circuit Endophenotype in Neurodevelopmental Disorders. Neuron, 98(2), 282–295. Kuroyanagi H. (2009). Fox-1 family of RNA-binding proteins. Cellular and molecular life sciences: CMLS, 66(24), 3895–3907.Lacoste, A. M., Schoppik, D., Robson, D. N., Haesemeyer, M., Portugues, R., Li, J. M., Randlett, O., Wee, C. L., Engert, F., & Schier, A. F. (2015). A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes. Current biology: CB, 25(11), 1526–1534.Lamprecht R. (2021). Actin Cytoskeleton Role in the Maintenance of Neuronal Morphology and Long-Term Memory. Cells, 10(7), 1795. Lane, S. J., & Reynolds, S. (2019). Sensory Over-Responsivity as an Added Dimension in ADHD. Frontiers in integrative neuroscience, 13, 40.Lane, S. J., Reynolds, S., & Thacker, L. (2010). Sensory Over-Responsivity and ADHD: Differentiating Using Electrodermal Responses, Cortisol, and Anxiety. Frontiers in integrative neuroscience, 4, 8.Lange, M., Froc, C., Grunwald, H., Norton, W., & Bally-Cuif, L. (2018). Pharmacological analysis of zebrafish lphn3.1 morphant larvae suggests that saturated dopaminergic signaling could underlie the ADHD-like locomotor hyperactivity. Progress in neuro-psychopharmacology & biological psychiatry, 84, 181–189. Lange, M., Norton, W., Coolen, M., Chaminade, M., Merker, S., Proft, F., Schmitt, A., Vernier, P., Lesch, K. P., & Bally-Cuif, L. (2012). The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Molecular psychiatry, 17(9), 946–954.Larsch, J., & Pantoja, C. (2019). Learning: Complexities of Habituation in Escaping Zebrafish Larvae. Current biology: CB, 29(8), R292–R294. Lee, J. A., Damianov, A., Lin, C. H., Fontes, M., Parikshak, N. N., Anderson, E. S., Geschwind, D. H., Black, D. L., & Martin, K. C. (2016). Cytoplasmic Rbfox1 Regulates the Expression of Synaptic and Autism-Related Genes. Neuron, 89(1), 113–128.Lee, Y. S., & Silva, A. J. (2011). Modeling hyperactivity: of mice and men. Nature medicine, 17(5), 541–542. Licatalosi, D. D., & Darnell, R. B. (2006). Splicing regulation in neurologic disease. Neuron, 52(1), 93–101. Lim, S. A., Kang, U. J., & McGehee, D. S. (2014). Striatal cholinergic interneuron regulation and circuit effects. Frontiers in synaptic neuroscience, 6, 22. Lin, F. R., Yaffe, K., Xia, J., Xue, Q. L., Harris, T. B., Purchase-Helzner, E., Satterfield, S., Ayonayon, H. N., Ferrucci, L., Simonsick, E. M., & Health ABC Study Group (2013). Hearing loss and cognitive decline in older adults. JAMA internal medicine, 173(4), 293–299.Lipscombe, D., & Lopez-Soto, E. J. (2018). Protected by a Fox. Neuron, 98(1), 3–5.Liu, C. X., Li, C. Y., Hu, C. C., Wang, Y., Lin, J., Jiang, Y. H., Li, Q., & Xu, X. (2018). CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Molecular autism, 9, 23. Li, X., Song, G., Zhao, Y., Zhao, F., Liu, C., Liu, D., Li, Q., & Cui, Z. (2018). Claudin7b is required for the formation and function of inner ear in zebrafish. Journal of cellular physiology, 233(4), 3195–3206.Li, Z., Chang, S. H., Zhang, L. Y., Gao, L., & Wang, J. (2014). Molecular genetic studies of ADHD and its candidate genes: a review. Psychiatry research, 219(1), 10–24. https://doi.org/10.1016/j.psychres.2014.05.005Lomber, S. G., & Butler, B. E. (2016). Sensory Development: Brief Visual Deprivation Alters Audiovisual Interactions. Current biology: CB, 26(22), R1185–R1187. López-Schier H. (2019). Neuroplasticity in the acoustic startle reflex in larval zebrafish. Current opinion in neurobiology, 54, 134–139. Lotfi, Y., Rezazadeh, N., Moossavi, A., Haghgoo, H. A., Rostami, R., Bakhshi, E., Badfar, F., Moghadam, S. F., Sadeghi-Firoozabadi, V., & Khodabandelou, Y. (2017). Preliminary evidence of improved cognitive performance following vestibular rehabilitation in children with combined ADHD (cADHD) and concurrent vestibular impairment. Auris, nasus, larynx, 44(6), 700–707. Lüffe, T. M., D'Orazio, A., Bauer, M., Gioga, Z., Schoeffler, V., Lesch, K. P., Romanos, M., Drepper, C., & Lillesaar, C. (2021). Increased locomotor activity via regulation of GABAergic signalling in foxp2 mutant zebrafish-implications for neurodevelopmental disorders. Translational psychiatry, 11(1), 529. Lukong, K. E., Chang, K. W., Khandjian, E. W., & Richard, S. (2008). RNA-binding proteins in human genetic disease. Trends in genetics: TIG, 24(8), 416–425. Malsam, J., Bärfuss, S., Trimbuch, T., Zarebidaki, F., Sonnen, A. F., Wild, K., Scheutzow, A., Rohland, L., Mayer, M. P., Sinning, I., Briggs, J., Rosenmund, C., & Söllner, T. H. (2020). Complexin Suppresses Spontaneous Exocytosis by Capturing the Membrane-Proximal Regions of VAMP2 and SNAP25. Cell reports, 32(3), 107926.Marsden, K. C., & Granato, M. (2015). In Vivo Ca2+ Imaging Reveals that Decreased Dendritic Excitability Drives Startle Habituation. Cell reports, 13(9), 1733–1740. Marsden, K. C., Jain, R. A., Wolman, M. A., Echeverry, F. A., Nelson, J. C., Hayer, K. E., Miltenberg, B., Pereda, A. E., & Granato, M. (2018). A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold. Cell reports, 23(3), 878–887. Massa, J., & O'Desky, I. H. (2012). Impaired visual habituation in adults with ADHD. Journal of attention disorders, 16(7), 553–561. Maximino, C., de Brito, T. M., Colmanetti, R., Pontes, A. A., de Castro, H. M., de Lacerda, R. I., Morato, S., & Gouveia, A., Jr (2010). Parametric analyses of anxiety in zebrafish scototaxis. Behavioral brain research, 210(1), 1–7. Maximino, C., de Brito, T. M., da Silva Batista, A. W., Herculano, A. M., Morato, S., & Gouveia, A., Jr (2010). Measuring anxiety in zebrafish: a critical review. Behavioural brain research, 214(2), 157–171. Morello, F., Voikar, V., Parkkinen, P., Panhelainen, A., Rosenholm, M., Makkonen, A., Rantamäki, T., Piepponen, P., Aitta-Aho, T., & Partanen, J. (2020). ADHD-like behaviors caused by inactivation of a transcription factor controlling the balance of inhibitory and excitatory neuron development in the mouse anterior brainstem. Translational psychiatry, 10(1), 357. Misonou, H., Mohapatra, D. P., Park, E. W., Leung, V., Zhen, D., Misonou, K., Anderson, A. E., & Trimmer, J. S. (2004). Regulation of ion channel localization and phosphorylation by neuronal activity. Nature neuroscience, 7(7), 711–718.Mooney, M. A., McWeeney, S. K., Faraone, S. V., Hinney, A., Hebebrand, J., IMAGE2 Consortium, German ADHD GWAS Group, Nigg, J. T., & Wilmot, B. (2016). Pathway analysis in attention deficit hyperactivity disorder: An ensemble approach. American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics, 171(6), 815–826.Moran, L. V., Ongur, D., Hsu, J., Castro, V. M., Perlis, R. H., & Schneeweiss, S. (2019). Psychosis with Methylphenidate or Amphetamine in Patients with ADHD. The New England journal of medicine, 380(12), 1128–1138. Moravec, C. E., Samuel, J., Weng, W., Wood, I. C., & Sirotkin, H. I. (2016). Maternal Rest/Nrsf Regulates Zebrafish Behavior through snap25a/b. The Journal of neuroscience: the official journal of the Society for Neuroscience, 36(36), 9407–9419.Mueller, A., Hong, D. S., Shepard, S., & Moore, T. (2017). Linking ADHD to the Neural Circuitry of Attention. Trends in cognitive sciences, 21(6), 474–488. Mu, Y., Li, X. Q., Zhang, B., & Du, J. L. (2012). Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism. Neuron, 75(4), 688–699. Naaijen, J., Bralten, J., Poelmans, G., IMAGE consortium, Glennon, J. C., Franke, B., & Buitelaar, J. K. (2017). Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism. Translational psychiatry, 7(1), e999. Nagai, J., Rajbhandari, A. K., Gangwani, M. R., Hachisuka, A., Coppola, G., Masmanidis, S. C., Fanselow, M. S., & Khakh, B. S. (2019). Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell, 177(5), 1280–1292.e20.Nanou, E., & Catterall, W. A. (2018). Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron, 98(3), 466–481.Nautiyal, K. M., Tanaka, K. F., Barr, M. M., Tritschler, L., Le Dantec, Y., David, D. J., Gardier, A. M., Blanco, C., Hen, R., & Ahmari, S. E. (2015). Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and Impulsivity. Neuron, 86(3), 813–826. Nelson, J. C., Witze, E., Ma, Z., Ciocco, F., Frerotte, A., Randlett, O., Foskett, J. K., & Granato, M. (2020). Acute Regulation of Habituation Learning via Posttranslational Palmitoylation. Current biology: CB, 30(14), 2729–2738.e4. Paine, T. A., Cooke, E. K., & Lowes, D. C. (2015). Effects of chronic inhibition of GABA synthesis on attention and impulse control. Pharmacology, biochemistry, and behavior, 135, 97–104. Papazian D. M. (1999). Potassium channels: some assembly required. Neuron, 23(1), 7–10.Parikshak, N. N., Swarup, V., Belgard, T. G., Irimia, M., Ramaswami, G., Gandal, M. J., Hartl, C., Leppa, V., Ubieta, L. T., Huang, J., Lowe, J. K., Blencowe, B. J., Horvath, S., & Geschwind, D. H. (2016). Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature, 540(7633), 423–427. Parato, J., & Bartolini, F. (2021). The microtubule cytoskeleton at the synapse. Neuroscience letters, 753, 135850. Peñagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H., Sonnenblick, L. I., Gruver, R., Almajano, J., Bragin, A., Golshani, P., Trachtenberg, J. T., Peles, E., & Geschwind, D. H. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 147(1), 235–246. Pichler, P., & Lagnado, L. (2019). The Transfer Characteristics of Hair Cells Encoding Mechanical Stimuli in the Lateral Line of Zebrafish. The Journal of neuroscience: the official journal of the Society for Neuroscience, 39(1), 112–124. Pichler, P., & Lagnado, L. (2020). Motor Behavior Selectively Inhibits Hair Cells Activated by Forward Motion in the Lateral Line of Zebrafish. Current biology: CB, 30(1), 150–157.e3. Piña, R., Rozas, C., Contreras, D., Hardy, P., Ugarte, G., Zeise, M. L., Rojas, P., & Morales, B. (2020). Atomoxetine Reestablishes Long Term Potentiation in a Mouse Model of Attention Deficit/Hyperactivity Disorder. Neuroscience, 439, 268–274. Plazas, P. V., & Elgoyhen, A. B. (2021). The Cholinergic Lateral Line Efferent Synapse: Structural, Functional and Molecular Similarities with Those of the Cochlea. Frontiers in cellular neuroscience, 15, 765083. Poelmans, G., Pauls, D. L., Buitelaar, J. K., & Franke, B. (2011). Integrated genome-wide association study findings: identification of a neurodevelopmental network for attention deficit hyperactivity disorder. The American journal of psychiatry, 168(4), 365–377.Popescu, M. V., & Polley, D. B. (2010). Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex. Neuron, 65(5), 718–731. Posar, A., & Visconti, P. (2018). Sensory abnormalities in children with autism spectrum disorder. Jornal de pediatria, 94(4), 342–350.Posner, J., Polanczyk, G. V., & Sonuga-Barke, E. (2020). Attention-deficit hyperactivity disorder. Lancet (London, England), 395(10222), 450–462. Poulsen, R. E., Scholz, L. A., Constantin, L., Favre-Bulle, I., Vanwalleghem, G. C., & Scott, E. K. (2021). Broad frequency sensitivity and complex neural coding in the larval zebrafish auditory system. Current biology: CB, 31(9), 1977–1987.e4. Pozzi, D., Condliffe, S., Bozzi, Y., Chikhladze, M., Grumelli, C., Proux-Gillardeaux, V., Takahashi, M., Franceschetti, S., Verderio, C., & Matteoli, M. (2008). Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 105(1), 323–328. Pozzi, D., Corradini, I., & Matteoli, M. (2019). The Control of Neuronal Calcium Homeostasis by SNAP-25 and its Impact on Neurotransmitter Release. Neuroscience, 420, 72–78. Praschberger, R., Jacquemyn, J., & Verstreken, P. (2021). Molecule-to-Circuit Disease Mechanisms of a Synaptic SNAREopathy. Neuron, 109(1), 1–3. Puts, N., Harris, A. D., Mikkelsen, M., Tommerdahl, M., Edden, R., & Mostofsky, S. H. (2017). Altered tactile sensitivity in children with attention-deficit hyperactivity disorder. Journal of neurophysiology, 118(5), 2568–2578. Quintana, D. S., Rokicki, J., van der Meer, D., Alnæs, D., Kaufmann, T., Córdova-Palomera, A., Dieset, I., Andreassen, O. A., & Westlye, L. T. (2019). Oxytocin pathway gene networks in the human brain. Nature communications, 10(1), 668.Raj, B., & Blencowe, B. J. (2015). Alternative Splicing in the Mammalian Nervous System: Recent Insights into Mechanisms and Functional Roles. Neuron, 87(1), 14–27. Ramaswami M. (2014). Network plasticity in adaptive filtering and behavioral habituation. Neuron, 82(6), 1216–1229. Randlett, O., Haesemeyer, M., Forkin, G., Shoenhard, H., Schier, A. F., Engert, F., & Granato, M. (2019). Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish. Current biology: CB, 29(8), 1337–1345.e4. Regan, S. L., Pitzer, E. M., Hufgard, J. R., Sugimoto, C., Williams, M. T., & Vorhees, C. V. (2021). A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats. Neurobiology of disease, 158, 105456. Regan, S. L., Williams, M. T., & Vorhees, C. V. (2022). Review of rodent models of attention deficit hyperactivity disorder. Neuroscience and biobehavioral reviews, 132, 621–637. Reinig, S., Driever, W., & Arrenberg, A. B. (2017). The Descending Diencephalic Dopamine System Is Tuned to Sensory Stimuli. Current biology: CB, 27(3), 318–333. Rihel, J., Prober, D. A., Arvanites, A., Lam, K., Zimmerman, S., Jang, S., Haggarty, S. J., Kokel, D., Rubin, L. L., Peterson, R. T., & Schier, A. F. (2010). Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science (New York, N.Y.), 327(5963), 348–351.Rivero, O., Selten, M. M., Sich, S., Popp, S., Bacmeister, L., Amendola, E., Negwer, M., Schubert, D., Proft, F., Kiser, D., Schmitt, A. G., Gross, C., Kolk, S. M., Strekalova, T., van den Hove, D., Resink, T. J., Nadif Kasri, N., & Lesch, K. P. (2015). Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Translational psychiatry, 5(10), e655. Roy, D. S., Zhang, Y., Aida, T., Choi, S., Chen, Q., Hou, Y., Lea, N. E., Skaggs, K. M., Quay, J. C., Liew, M., Maisano, H., Le, V., Jones, C., Xu, J., Kong, D., Sullivan, H. A., Saunders, A., McCarroll, S. A., Wickersham, I. R., & Feng, G. (2021). Anterior thalamic dysfunction underlies cognitive deficits in a subset of neuropsychiatric disease models. Neuron, 109(16), 2590–2603.e13. Roy, D. S., Zhang, Y., Aida, T., Shen, C., Skaggs, K. M., Hou, Y., Fleishman, M., Mosto, O., Weninger, A., & Feng, G. (2022). Anterior thalamic circuits crucial for working memory. Proceedings of the National Academy of Sciences of the United States of America, 119(20), e2118712119. Roy, D. S., Zhang, Y., Halassa, M. M., & Feng, G. (2022). Thalamic subnetworks as units of function. Nature neuroscience, 25(2), 140–153. Sagvolden, T., Russell, V. A., Aase, H., Johansen, E. B., & Farshbaf, M. (2005). Rodent models of attention-deficit/hyperactivity disorder. Biological psychiatry, 57(11), 1239–1247.Salesse, C., Charest, J., Doucet-Beaupré, H., Castonguay, A. M., Labrecque, S., De Koninck, P., & Lévesque, M. (2020). Opposite Control of Excitatory and Inhibitory Synapse Formation by Slitrk2 and Slitrk5 on Dopamine Neurons Modulates Hyperactivity Behavior. Cell reports, 30(7), 2374–2386.e5. Schmid, S., Wilson, D. A., & Rankin, C. H. (2015). Habituation mechanisms and their importance for cognitive function. Frontiers in integrative neuroscience, 8, 97. Schultz W. (2007). Multiple dopamine functions at different time courses. Annual review of neuroscience, 30, 259–288.Scullin, C. S., Tafoya, L. C., Wilson, M. C., & Partridge, L. D. (2012). Presynaptic residual calcium and synaptic facilitation at hippocampal synapses of mice with altered expression of SNAP-25. Brain research, 1431, 1–12. Selak, S., Paternain, A. V., Aller, M. I., Picó, E., Rivera, R., & Lerma, J. (2009). A role for SNAP25 in internalization of kainate receptors and synaptic plasticity. Neuron, 63(3), 357–371. Senna, I., Andres, E., McKyton, A., Ben-Zion, I., Zohary, E., & Ernst, M. O. (2021). Development of multisensory integration following prolonged early-onset visual deprivation. Current biology: CB, 31(21), 4879–4885.e6. Shahriari, D., Rosenfeld, D., & Anikeeva, P. (2020). Emerging Frontier of Peripheral Nerve and Organ Interfaces. Neuron, 108(2), 270–285.Sheridan, M. A., & McLaughlin, K. A. (2014). Dimensions of early experience and neural development: deprivation and threat. Trends in cognitive sciences, 18(11), 580–585.Simms, B. A., & Zamponi, G. W. (2014). Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron, 82(1), 24–45. Smith K. M. (2018). Hyperactivity in mice lacking one allele of the glutamic acid decarboxylase 67 gene. Attention deficit and hyperactivity disorders, 10(4), 267–271. Smith, K. R., Davenport, E. C., Wei, J., Li, X., Pathania, M., Vaccaro, V., Yan, Z., & Kittler, J. T. (2014). GIT1 and βPIX are essential for GABA(A) receptor synaptic stability and inhibitory neurotransmission. Cell reports, 9(1), 298–310.Sontag, T. A., Tucha, O., Walitza, S., & Lange, K. W. (2010). Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. Attention deficit and hyperactivity disorders, 2(1), 1–20.Soreq H. (2015). Checks and balances on cholinergic signaling in brain and body function. Trends in neurosciences, 38(7), 448–458. Sousa, B., Martins, J., Castelo-Branco, M., & Gonçalves, J. (2022). Transcranial Direct Current Stimulation as an Approach to Mitigate Neurodevelopmental Disorders Affecting Excitation/Inhibition Balance: Focus on Autism Spectrum Disorder, Schizophrenia, and Attention Deficit/Hyperactivity Disorder. Journal of clinical medicine, 11(10), 2839.Souza, T. P., Franscescon, F., Stefanello, F. V., Müller, T. E., Santos, L. W., & Rosemberg, D. B. (2021). Acute effects of ethanol on behavioral responses of male and female zebrafish in the open field test with the influence of a non-familiar object. Behavioural processes, 191, 104474.Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R., & Kalueff, A. V. (2014). Zebrafish models for translational neuroscience research: from tank to bedside. Trends in neurosciences, 37(5), 264–278. Su, L. D., Wang, N., Han, J., & Shen, Y. (2021). Group 1 Metabotropic Glutamate Receptors in Neurological and Psychiatric Diseases: Mechanisms and Prospective. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry, 10738584211021018. Advance online publication. Sullivan, P. F., & Geschwind, D. H. (2019). Defining the Genetic, Genomic, Cellular, and Diagnostic Architectures of Psychiatric Disorders. Cell, 177(1), 162–183.Sun, P., Zhang, Y., Zhao, F., Wu, J. P., Pun, S. H., Peng, C., Du, M., Vai, M. I., Liu, D., & Chen, F. (2018). An Assay for Systematically Quantifying the Vestibulo-Ocular Reflex to Assess Vestibular Function in Zebrafish Larvae. Frontiers in cellular neuroscience, 12, 257. Surmeier, D. J., & Foehring, R. (2004). A mechanism for homeostatic plasticity. Nature neuroscience, 7(7), 691–692. Tabor, K. M., Smith, T. S., Brown, M., Bergeron, S. A., Briggman, K. L., & Burgess, H. A. (2018). Presynaptic Inhibition Selectively Gates Auditory Transmission to the Brainstem Startle Circuit. Current biology: CB, 28(16), 2527–2535.e8.Tay, T. L., Ronneberger, O., Ryu, S., Nitschke, R., & Driever, W. (2011). Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nature communications, 2, 171. Thapar, A., & Cooper, M. (2016). Attention deficit hyperactivity disorder. Lancet (London, England), 387(10024), 1240–1250. Thisse, C., & Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature protocols, 3(1), 59–69.Tomasoni, R., Repetto, D., Morini, R., Elia, C., Gardoni, F., Di Luca, M., Turco, E., Defilippi, P., & Matteoli, M. (2013). SNAP-25 regulates spine formation through postsynaptic binding to p140Cap. Nature communications, 4, 2136. Valladolid-Acebes, I., Daraio, T., Brismar, K., Hökfelt, T., & Bark, C. (2016). Minor differences in the molecular machinery mediating regulated membrane fusion has major impact on metabolic health. Adipocyte, 5(3), 318–325. Van Hecke, R., Danneels, M., Dhooge, I., Van Waelvelde, H., Wiersema, J. R., Deconinck, F., & Maes, L. (2019). Vestibular Function in Children with Neurodevelopmental Disorders: A Systematic Review. Journal of autism and developmental disorders, 49(8), 3328–3350.Verhage, M., & Sørensen, J. B. (2020). SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron, 107(1), 22–37. Vuong, C. K., Black, D. L., & Zheng, S. (2016). The neurogenetics of alternative splicing. Nature reviews. Neuroscience, 17(5), 265–281. Vuong, C. K., Wei, W., Lee, J. A., Lin, C. H., Damianov, A., de la Torre-Ubieta, L., Halabi, R., Otis, K. O., Martin, K. C., O'Dell, T. J., & Black, D. L. (2018). Rbfox1 Regulates Synaptic Transmission through the Inhibitory Neuron-Specific vSNARE Vamp1. Neuron, 98(1), 127–141.e7.Walker, R. L., Ramaswami, G., Hartl, C., Mancuso, N., Gandal, M. J., de la Torre-Ubieta, L., Pasaniuc, B., Stein, J. L., & Geschwind, D. H. (2020). Genetic Control of Expression and Splicing in Developing Human Brain Informs Disease Mechanisms. Cell, 181(3), 745. Wamsley, B., Jaglin, X. H., Favuzzi, E., Quattrocolo, G., Nigro, M. J., Yusuf, N., Khodadadi-Jamayran, A., Rudy, B., & Fishell, G. (2018). Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons. Neuron, 100(4), 846–859.e7.Wee, C. L., Song, E., Nikitchenko, M., Herrera, K. J., Wong, S., Engert, F., & Kunes, S. (2022). Social isolation modulates appetite and avoidance behavior via a common oxytocinergic circuit in larval zebrafish. Nature communications, 13(1), 2573.Westerfield, M. (2000) The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). 4th Edition, University of Oregon Press, Eugene.Wolman, M. A., Jain, R. A., Liss, L., & Granato, M. (2011). Chemical modulation of memory formation in larval zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15468–15473.Wolman, M. A., Jain, R. A., Marsden, K. C., Bell, H., Skinner, J., Hayer, K. E., Hogenesch, J. B., & Granato, M. (2015). A genome-wide screen identifies PAPP-AA-mediated IGFR signaling as a novel regulator of habituation learning. Neuron, 85(6), 1200–1211. Won, H., Mah, W., Kim, E., Kim, J. W., Hahm, E. K., Kim, M. H., Cho, S., Kim, J., Jang, H., Cho, S. C., Kim, B. N., Shin, M. S., Seo, J., Jeong, J., Choi, S. Y., Kim, D., Kang, C., & Kim, E. (2011). GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nature medicine, 17(5), 566–572.Wu, C. S., Jew, C. P., Sun, H., Ballester Rosado, C. J., & Lu, H. C. (2020). mGlu5 in GABAergic neurons modulates spontaneous and psychostimulant-induced locomotor activity. Psychopharmacology, 237(2), 345–361.Wu, R. S., Lam, I. I., Clay, H., Duong, D. N., Deo, R. C., & Coughlin, S. R. (2018). A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. Developmental cell, 46(1), 112–125.e4. Xu, J., Marshall, J. J., Kraniotis, S., Nomura, T., Zhu, Y., & Contractor, A. (2021). Genetic disruption of Grm5 causes complex alterations in motor activity, anxiety and social behaviors. Behavioural brain research, 411, 113378.Yang, L., Chang, S., Lu, Q., Zhang, Y., Wu, Z., Sun, X., Cao, Q., Qian, Y., Jia, T., Xu, B., Duan, Q., Li, Y., Zhang, K., Schumann, G., Liu, D., Wang, J., Wang, Y., & Lu, L. (2018). A new locus regulating MICALL2 expression was identified for association with executive inhibition in children with attention deficit hyperactivity disorder. Molecular psychiatry, 23(4), 1014–1020. Ying, Y., Wang, X. J., Vuong, C. K., Lin, C. H., Damianov, A., & Black, D. L. (2017). Splicing Activation by Rbfox Requires Self-Aggregation through Its Tyrosine-Rich Domain. Cell, 170(2), 312–323.e10. Yu, X., Ba, W., Zhao, G., Ma, Y., Harding, E. C., Yin, L., Wang, D., Li, H., Zhang, P., Shi, Y., Yustos, R., Vyssotski, A. L., Dong, H., Franks, N. P., & Wisden, W. (2021). Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Molecular psychiatry, 26(9), 5213–5228. Yuan, F. F., Gu, X., Huang, X., Zhong, Y., & Wu, J. (2017). SLC6A1 gene involvement in susceptibility to attention-deficit/hyperactivity disorder: A case-control study and gene-environment interaction. Progress in neuro-psychopharmacology & biological psychiatry, 77, 202–208. Zhang, H., Wang, H., Shen, X., Jia, X., Yu, S., Qiu, X., Wang, Y., Du, J., Yan, J., & He, J. (2021). The landscape of regulatory genes in brain-wide neuronal phenotypes of a vertebrate brain. eLife, 10, e68224.Zhang, Y., Roy, D. S., Zhu, Y., Chen, Y., Aida, T., Hou, Y., Shen, C., Lea, N. E., Schroeder, M. E., Skaggs, K. M., Sullivan, H. A., Fischer, K. B., Callaway, E. M., Wickersham, I. R., Dai, J., Li, X. M., Lu, Z., & Feng, G. (2022). Targeting thalamic circuits rescues motor and mood deficits in PD mice. Nature, 607(7918), 321–329. Zhou, K., Cherra, S. J., 3rd, Goncharov, A., & Jin, Y. (2017). Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca2+ Sensor Protein. Cell reports, 19(6), 1117–1129. Zoodsma, J. D., Chan, K., Bhandiwad, A. A., Golann, D. R., Liu, G., Syed, S. A., Napoli, A. J., Burgess, H. A., Sirotkin, H. I., & Wollmuth, L. P. (2020). A Model to Study NMDA Receptors in Early Nervous System Development. The Journal of neuroscience: the official journal of the Society for Neuroscience, 40(18), 3631–3645. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/474997 |
专题 | 生命科学学院_生物系 |
推荐引用方式 GB/T 7714 |
Zhang N. ZEBRAFISH KCNA3 AND RBFOX1 MUTANTS PROVIDE NEW INSIGHTS INTO ATTENTION-DEFICIT/HYPERACTIVITY DISORDER[D]. 新加坡. 新加坡国立大学,2022.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11855011-张娜-生物系.pdf(9374KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[张娜]的文章 |
百度学术 |
百度学术中相似的文章 |
[张娜]的文章 |
必应学术 |
必应学术中相似的文章 |
[张娜]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论