题名 | Depthwise separable convolution Unet for 3D seismic data interpolation |
作者 | |
通讯作者 | Wu, Bangyu |
发表日期 | 2023-01-11
|
DOI | |
发表期刊 | |
EISSN | 2296-6463
|
卷号 | 10 |
摘要 | In seismic exploration, dense and evenly spatial sampled seismic traces are crucial for successful implementation of most seismic data processing and interpretation algorithms. Recently, numerous seismic data reconstruction approaches based on deep learning have been presented. High dimension-based methods have the benefit of making full use of seismic signal at different perspectives. However, with the transformation of data dimension from low to high, the parameter capacity and computation cost of training deep neural network increase significantly. In this paper, we introduce depthwise separable convolution instead of standard convolution to reduce the operation cost of Unet for 3D seismic data missing trace interpolation. The structural similarity (SSIM), L-1 hybrid loss function, and switchable normalization further improve the reconstruction performance of the network. The comparative experiments on the synthetic and field seismic data show that depthwise separable convolution can effectively reduce the number of network parameters and computation intensity with the interpolation results comparable to the standard convolution results. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[41974122]
; Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology[2022B1212010002]
|
WOS研究方向 | Geology
|
WOS类目 | Geosciences, Multidisciplinary
|
WOS记录号 | WOS:000922206000001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/475009 |
专题 | 南方科技大学 |
作者单位 | 1.Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China 2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 |
Jin, Zhenhui,Li, Xinze,Yang, Hui,et al. Depthwise separable convolution Unet for 3D seismic data interpolation[J]. FRONTIERS IN EARTH SCIENCE,2023,10.
|
APA |
Jin, Zhenhui,Li, Xinze,Yang, Hui,Wu, Bangyu,&Zhu, Xu.(2023).Depthwise separable convolution Unet for 3D seismic data interpolation.FRONTIERS IN EARTH SCIENCE,10.
|
MLA |
Jin, Zhenhui,et al."Depthwise separable convolution Unet for 3D seismic data interpolation".FRONTIERS IN EARTH SCIENCE 10(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论