中文版 | English
题名

Variable Selection for Distributed Sparse Regression Under Memory Constraints

作者
通讯作者Jiang, Xuejun
发表日期
2023-02-01
DOI
发表期刊
ISSN
2194-6701
EISSN
2194-671X
摘要

This paper studies variable selection using the penalized likelihood method for distributed sparse regression with large sample size n under a limited memory constraint. This is a much needed research problem to be solved in the big data era. A naive divide-and-conquer method solving this problem is to split the whole data into N parts and run each part on one of N machines, aggregate the results from all machines via averaging, and finally obtain the selected variables. However, it tends to select more noise variables, and the false discovery rate may not be well controlled. We improve it by a special designed weighted average in aggregation. Although the alternating direction method of multiplier can be used to deal with massive data in the literature, our proposed method reduces the computational burden a lot and performs better by mean square error in most cases. Theoretically, we establish asymptotic properties of the resulting estimators for the likelihood models with a diverging number of parameters. Under some regularity conditions, we establish oracle properties in the sense that our distributed estimator shares the same asymptotic efficiency as the estimator based on the full sample. Computationally, a distributed penalized likelihood algorithm is proposed to refine the results in the context of general likelihoods. Furthermore, the proposed method is evaluated by simulations and a real example.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
NSFC[11871263] ; NSF grant of Guangdong Province of China[2017A030313012]
WOS研究方向
Mathematics
WOS类目
Mathematics
WOS记录号
WOS:000921784400001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/475022
专题理学院_统计与数据科学系
作者单位
1.Harbin Inst Technol, Dept Math, Harbin, Peoples R China
2.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
3.Hong Kong Baptist Univ United Int Coll, Beijing Normal Univ, Zhuhai, Peoples R China
4.Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC USA
第一作者单位统计与数据科学系
通讯作者单位统计与数据科学系
推荐引用方式
GB/T 7714
Wang, Haofeng,Jiang, Xuejun,Zhou, Min,et al. Variable Selection for Distributed Sparse Regression Under Memory Constraints[J]. Communications in Mathematics and Statistics,2023.
APA
Wang, Haofeng,Jiang, Xuejun,Zhou, Min,&Jiang, Jiancheng.(2023).Variable Selection for Distributed Sparse Regression Under Memory Constraints.Communications in Mathematics and Statistics.
MLA
Wang, Haofeng,et al."Variable Selection for Distributed Sparse Regression Under Memory Constraints".Communications in Mathematics and Statistics (2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2023_02_CIMS.pdf(1530KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Haofeng]的文章
[Jiang, Xuejun]的文章
[Zhou, Min]的文章
百度学术
百度学术中相似的文章
[Wang, Haofeng]的文章
[Jiang, Xuejun]的文章
[Zhou, Min]的文章
必应学术
必应学术中相似的文章
[Wang, Haofeng]的文章
[Jiang, Xuejun]的文章
[Zhou, Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。