中文版 | English
题名

High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques

作者
通讯作者Zhang, Dongxiao; Mo, Fanyang
发表日期
2022-12-08
DOI
发表期刊
ISSN
2451-9294
卷号8期号:12
摘要
As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography ( TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (R-f). The trained ML models are able to predict the R-f value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data.
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China["22071004","21933001","22150013"]
WOS研究方向
Chemistry
WOS类目
Chemistry, Multidisciplinary
WOS记录号
WOS:000919705600001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/475102
专题南方科技大学
作者单位
1.Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China
2.Peking Univ, Coll Engn, BIC ESAT, ERE, Beijing 100871, Peoples R China
3.Peking Univ, Coll Engn, SKLTCS, Beijing 100871, Peoples R China
4.Yongriver Inst Technol, Eastern Inst Adv Study, Ningbo 315200, Peoples R China
5.Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
6.Univ Toledo, Sch Green Chem & Engn, Dept Chem & Biochem, 2801 W Bancroft St, Toledo, OH 43606 USA
7.WuXi AppTec Co Ltd, Chem Serv Unit, Shanghai 200131, Peoples R China
8.Peng Cheng Lab, Dept Math & Theories, Shenzhen 518000, Peoples R China
9.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518000, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Xu, Hao,Lin, Jinglong,Liu, Qianyi,et al. High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques[J]. Chem,2022,8(12).
APA
Xu, Hao.,Lin, Jinglong.,Liu, Qianyi.,Chen, Yuntian.,Zhang, Jianning.,...&Mo, Fanyang.(2022).High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques.Chem,8(12).
MLA
Xu, Hao,et al."High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques".Chem 8.12(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu, Hao]的文章
[Lin, Jinglong]的文章
[Liu, Qianyi]的文章
百度学术
百度学术中相似的文章
[Xu, Hao]的文章
[Lin, Jinglong]的文章
[Liu, Qianyi]的文章
必应学术
必应学术中相似的文章
[Xu, Hao]的文章
[Lin, Jinglong]的文章
[Liu, Qianyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。