题名 | High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques |
作者 | |
通讯作者 | Zhang, Dongxiao; Mo, Fanyang |
发表日期 | 2022-12-08
|
DOI | |
发表期刊 | |
ISSN | 2451-9294
|
卷号 | 8期号:12 |
摘要 | As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography ( TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (R-f). The trained ML models are able to predict the R-f value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China["22071004","21933001","22150013"]
|
WOS研究方向 | Chemistry
|
WOS类目 | Chemistry, Multidisciplinary
|
WOS记录号 | WOS:000919705600001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/475102 |
专题 | 南方科技大学 |
作者单位 | 1.Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China 2.Peking Univ, Coll Engn, BIC ESAT, ERE, Beijing 100871, Peoples R China 3.Peking Univ, Coll Engn, SKLTCS, Beijing 100871, Peoples R China 4.Yongriver Inst Technol, Eastern Inst Adv Study, Ningbo 315200, Peoples R China 5.Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA 6.Univ Toledo, Sch Green Chem & Engn, Dept Chem & Biochem, 2801 W Bancroft St, Toledo, OH 43606 USA 7.WuXi AppTec Co Ltd, Chem Serv Unit, Shanghai 200131, Peoples R China 8.Peng Cheng Lab, Dept Math & Theories, Shenzhen 518000, Peoples R China 9.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518000, Peoples R China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Xu, Hao,Lin, Jinglong,Liu, Qianyi,et al. High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques[J]. Chem,2022,8(12).
|
APA |
Xu, Hao.,Lin, Jinglong.,Liu, Qianyi.,Chen, Yuntian.,Zhang, Jianning.,...&Mo, Fanyang.(2022).High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques.Chem,8(12).
|
MLA |
Xu, Hao,et al."High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques".Chem 8.12(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论