中文版 | English
题名

Automated detection of glottic laryngeal carcinoma in laryngoscopic images from a multicentre database using a convolutional neural network

作者
通讯作者Kang, Jing; Ge, Pingjiang
发表日期
2023
DOI
发表期刊
ISSN
1749-4478
EISSN
1749-4486
卷号48期号:3
摘要
Objective: Little is known about the efficacy of using artificial intelligence (AI) to identify laryngeal carcinoma from images of vocal lesions taken in different hospitals with multiple laryngoscope systems. This multicentre study aimed to establish an AI system and provide a reliable auxiliary tool to screen for laryngeal carcinoma.Study design: Multicentre case-control study.Setting: Six tertiary care centres.Participants: Laryngoscopy images were collected from 2179 patients with vocal fold lesions.Outcome measures: An automatic detection system of laryngeal carcinoma was established and used to distinguish malignant and benign vocal lesions in 2179 laryngoscopy images acquired from 6 hospitals with 5 types of laryngoscopy systems. Pathological examination was the gold standard for identifying malignant and benign vocal lesions.Results: Out of 89 cases in the malignant group, the classifier was able to correctly identify laryngeal carcinoma in 66 patients (74.16%, sensitivity). Out of 640 cases in the benign group, the classifier was able to accurately assess the laryngeal lesion in 503 cases (78.59%, specificity). Furthermore, the region-based convolutional neural network (R-CNN) classifier achieved an overall accuracy of 78.05%, with a 95.63% negative predictive value and a 32.51% positive predictive value for the testing data set.Conclusion: This automatic diagnostic system has the potential to assist clinical laryngeal carcinoma diagnosis which may improve and standardise the diagnostic capacity of laryngologists using different laryngoscopes.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[82000966]
WOS研究方向
Otorhinolaryngology
WOS类目
Otorhinolaryngology
WOS记录号
WOS:000918351500001
出版者
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/479615
专题南方科技大学第一附属医院
作者单位
1.Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Dept Otolaryngol & Head Neck Surg, 106 Zhongshan Second Rd, Guangzhou 510080, Peoples R China
2.South China Univ Technol, Sch Med, Guangzhou, Peoples R China
3.Guangzhou Univ Chinese Med, Zhongshan Hosp Tradit Chinese Med, Dept Otorhinolaryngol Head & Neck Surg, Zhongshan, Guangdong, Peoples R China
4.Southern Univ Sci & Technol, Jinan Univ, Shenzhen Peoples Hosp, Dept Otolaryngol,Affiliated Hosp 1,Clin Med Coll, Shenzhen, Peoples R China
5.Zhaoqing Gaoyao Peoples Hosp, Dept Otolaryngol, Zhaoqing, Peoples R China
6.Second Peoples Hosp Longgang Dist, Dept Otolaryngol, Shenzhen, Peoples R China
7.Gaozhou Peoples Hosp, Dept Otolaryngol, Gaozhou, Peoples R China
8.Univ Iowa, Dept Biomed Engn, Iowa City, IA USA
9.Univ Wisconsin Madison, Sch Med & Publ Hlth AS, Dept Surg, Div Otolaryngol Head & Neck Surg, Madison, WI USA
推荐引用方式
GB/T 7714
Yan, Peikai,Li, Shaohua,Zhou, Zhou,et al. Automated detection of glottic laryngeal carcinoma in laryngoscopic images from a multicentre database using a convolutional neural network[J]. CLINICAL OTOLARYNGOLOGY,2023,48(3).
APA
Yan, Peikai.,Li, Shaohua.,Zhou, Zhou.,Liu, Qian.,Wu, Jiahui.,...&Ge, Pingjiang.(2023).Automated detection of glottic laryngeal carcinoma in laryngoscopic images from a multicentre database using a convolutional neural network.CLINICAL OTOLARYNGOLOGY,48(3).
MLA
Yan, Peikai,et al."Automated detection of glottic laryngeal carcinoma in laryngoscopic images from a multicentre database using a convolutional neural network".CLINICAL OTOLARYNGOLOGY 48.3(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yan, Peikai]的文章
[Li, Shaohua]的文章
[Zhou, Zhou]的文章
百度学术
百度学术中相似的文章
[Yan, Peikai]的文章
[Li, Shaohua]的文章
[Zhou, Zhou]的文章
必应学术
必应学术中相似的文章
[Yan, Peikai]的文章
[Li, Shaohua]的文章
[Zhou, Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。