题名 | Student Becomes Decathlon Master in Retinal Vessel Segmentation via Dual-Teacher Multi-target Domain Adaptation |
作者 | |
通讯作者 | Tang, Xiaoying |
DOI | |
发表日期 | 2022
|
会议名称 | 13th MICCAI Workshop on Machine Learning in Medical Imaging (MICCAI-MLMI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-21013-6
|
会议录名称 | |
卷号 | 13583
|
会议日期 | SEP 18, 2022
|
会议地点 | null,Singapore,SINGAPORE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Unsupervised domain adaptation has been proposed recently to tackle the so-called domain shift between training data and test data with different distributions. However, most of them only focus on single-target domain adaptation and cannot be applied to the scenario with multiple target domains. In this paper, we propose RVms, a novel unsupervised multi-target domain adaptation approach to segment retinal vessels (RVs) from multimodal and multicenter retinal images. RVms mainly consists of a style augmentation and transfer (SAT) module and a dual-teacher knowledge distillation (DTKD) module. SAT augments and clusters images into source-similar domains and source-dissimilar domains via Bezier and Fourier transformations. DTKD utilizes the augmented and transformed data to train two teachers, one for source-similar domains and the other for source-dissimilar domains. Afterwards, knowledge distillation is performed to iteratively distill different domain knowledge from teachers to a generic student. The local relative intensity transformation is employed to characterize RVs in a domain invariant manner and promote the generalizability of teachers and student models. Moreover, we construct a new multimodal and multicenter vascular segmentation dataset from existing publicly-available datasets, which can be used to benchmark various domain adaptation and domain generalization methods. Through extensive experiments, RVms is found to be very close to the target-trained Oracle in terms of segmenting the RVs, largely outperforming other state-of-the-art methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Shenzhen Basic Research Program[JCYJ20200925153847004]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000922009300004
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/479621 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China 2.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China 3.Southern Univ Sci & Technol, Jiaxing Res Inst, Jiaxing, Peoples R China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系; 南方科技大学 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Peng, Linkai,Lin, Li,Cheng, Pujin,et al. Student Becomes Decathlon Master in Retinal Vessel Segmentation via Dual-Teacher Multi-target Domain Adaptation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论