中文版 | English
题名

Student Becomes Decathlon Master in Retinal Vessel Segmentation via Dual-Teacher Multi-target Domain Adaptation

作者
通讯作者Tang, Xiaoying
DOI
发表日期
2022
会议名称
13th MICCAI Workshop on Machine Learning in Medical Imaging (MICCAI-MLMI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-21013-6
会议录名称
卷号
13583
会议日期
SEP 18, 2022
会议地点
null,Singapore,SINGAPORE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要

Unsupervised domain adaptation has been proposed recently to tackle the so-called domain shift between training data and test data with different distributions. However, most of them only focus on single-target domain adaptation and cannot be applied to the scenario with multiple target domains. In this paper, we propose RVms, a novel unsupervised multi-target domain adaptation approach to segment retinal vessels (RVs) from multimodal and multicenter retinal images. RVms mainly consists of a style augmentation and transfer (SAT) module and a dual-teacher knowledge distillation (DTKD) module. SAT augments and clusters images into source-similar domains and source-dissimilar domains via Bezier and Fourier transformations. DTKD utilizes the augmented and transformed data to train two teachers, one for source-similar domains and the other for source-dissimilar domains. Afterwards, knowledge distillation is performed to iteratively distill different domain knowledge from teachers to a generic student. The local relative intensity transformation is employed to characterize RVs in a domain invariant manner and promote the generalizability of teachers and student models. Moreover, we construct a new multimodal and multicenter vascular segmentation dataset from existing publicly-available datasets, which can be used to benchmark various domain adaptation and domain generalization methods. Through extensive experiments, RVms is found to be very close to the target-trained Oracle in terms of segmenting the RVs, largely outperforming other state-of-the-art methods.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Shenzhen Basic Research Program[JCYJ20200925153847004]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000922009300004
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/479621
专题工学院_电子与电气工程系
作者单位
1.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
2.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
3.Southern Univ Sci & Technol, Jiaxing Res Inst, Jiaxing, Peoples R China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系;  南方科技大学
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Peng, Linkai,Lin, Li,Cheng, Pujin,et al. Student Becomes Decathlon Master in Retinal Vessel Segmentation via Dual-Teacher Multi-target Domain Adaptation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peng, Linkai]的文章
[Lin, Li]的文章
[Cheng, Pujin]的文章
百度学术
百度学术中相似的文章
[Peng, Linkai]的文章
[Lin, Li]的文章
[Cheng, Pujin]的文章
必应学术
必应学术中相似的文章
[Peng, Linkai]的文章
[Lin, Li]的文章
[Cheng, Pujin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。