题名 | Simulating Spiking Neural Networks Based on SW26010pro |
作者 | |
通讯作者 | Li, Xuelei; Wei, Yanjie |
DOI | |
发表日期 | 2022
|
会议名称 | 18th International Symposium on Bioinformatics Research and Applications (ISBRA)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-23197-1
|
会议录名称 | |
卷号 | 13760
|
会议日期 | NOV 14-17, 2022
|
会议地点 | Univ Haifa,Haifa,ISRAEL
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | The spiking neural network (SNN) simulators play a significant role in modeling neural systems and the study of brain function. Currently, many simulators using CPU or GPU have been developed. However, these simulators usually show low efficiency, resulting from the random synaptic connections, random spiking events, and random synaptic delay and plastic properties in the SNN models. To overcome the problem of randommemory access etc., a new simulator named SWsnn is developed based on a new Chinese processor, SW26010pro. SW26010pro consists of six core groups (CGs), and each CG has 16 MB of local direct memory (LDM) (similar to L1/L2 cache), which is enough to store neuron data for a long time. By rearranging the synaptic and neuron data, SWsnn ensures that most of the randommemory access occurs in the neuron data, and the reusability of the LDM is improved obviously. The results illustrate that the proposed SWsnn runs faster than other GPU-based simulators. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Key Research and Development Project of Guangdong Province[2021B0101310002]
|
WOS研究方向 | Computer Science
; Mathematical & Computational Biology
|
WOS类目 | Computer Science, Information Systems
; Computer Science, Interdisciplinary Applications
; Mathematical & Computational Biology
|
WOS记录号 | WOS:000913222200032
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/479622 |
专题 | 南方科技大学 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China 2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wang, Zhichao,Li, Xuelei,Meng, Jintao,et al. Simulating Spiking Neural Networks Based on SW26010pro[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论