中文版 | English
题名

Filter pruning with uniqueness mechanism in the frequency domain for efficient neural networks

作者
通讯作者Han,Jungong
发表日期
2023-04-14
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号530页码:116-124
摘要
Filter pruning has drawn extensive attention due to its advantage in reducing computational costs and memory requirements of deep convolutional neural networks. However, most existing methods only prune filters based on their intrinsic properties or spatial feature maps, ignoring the correlation between filters. In this paper, we suggest the correlation is valuable and consider it from a novel view: the frequency domain. Specifically, we first transfer features to the frequency domain by Discrete Cosine Transform (DCT). Then, for each feature map, we compute a uniqueness score, which measures its probability of being replaced by others. This way allows to prune the filters corresponding to the low-uniqueness maps without significant performance degradation. Compared to the methods focusing on intrinsic properties, our proposed method introduces a more comprehensive criterion to prune filters, further improving the network compactness while preserving good performance. In addition, our method is more robust against noise than the spatial ones since the critical clues for pruning are more concentrated after DCT. Experimental results demonstrate the superiority of our method. To be specific, our method outperforms the baseline ResNet-56 by 0.38% on CIFAR-10 while reducing the floating-point operations (FLOPs) by 47.4%. In addition, a consistent improvement can be observed when pruning the baseline ResNet-110: 0.23% performance increase and up to 71% FLOPs drop. Finally, on ImageNet, our method reduces the FLOPs of the baseline ResNet-50 by 48.7% with only 0.32% accuracy loss.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000947462600001
出版者
EI入藏号
20230713591039
EI主题词
Computer vision ; Convolutional neural networks ; Deep neural networks ; Digital arithmetic ; Frequency domain analysis ; Image classification
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Vision:741.2 ; Mathematical Transformations:921.3 ; Numerical Methods:921.6
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85147913922
来源库
Scopus
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/479623
专题工学院_计算机科学与工程系
作者单位
1.School of Computing and Communications,Lancaster University,Lancaster,LA1 4WA,United Kingdom
2.WMG Data Science,The University of Warwick,Coventry,CV4 7AL,United Kingdom
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.Department of Computer Science,The University of Sheffield,Sheffield,Regent Court, 211 Portobello,S1 4DP,United Kingdom
推荐引用方式
GB/T 7714
Zhang,Shuo,Gao,Mingqi,Ni,Qiang,et al. Filter pruning with uniqueness mechanism in the frequency domain for efficient neural networks[J]. NEUROCOMPUTING,2023,530:116-124.
APA
Zhang,Shuo,Gao,Mingqi,Ni,Qiang,&Han,Jungong.(2023).Filter pruning with uniqueness mechanism in the frequency domain for efficient neural networks.NEUROCOMPUTING,530,116-124.
MLA
Zhang,Shuo,et al."Filter pruning with uniqueness mechanism in the frequency domain for efficient neural networks".NEUROCOMPUTING 530(2023):116-124.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Shuo]的文章
[Gao,Mingqi]的文章
[Ni,Qiang]的文章
百度学术
百度学术中相似的文章
[Zhang,Shuo]的文章
[Gao,Mingqi]的文章
[Ni,Qiang]的文章
必应学术
必应学术中相似的文章
[Zhang,Shuo]的文章
[Gao,Mingqi]的文章
[Ni,Qiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。