中文版 | English
题名

UNDERSTANDING THE MOLECULAR WEIGHT DISTRIBUTION SHAPE-PROPERTY RELATIONSHIP BASED ON LINEAR UNIMODAL AND BIMODAL POLYETHYLENES MODEL SYSTEM

其他题名
基于线性单峰双峰聚乙烯模型体系研究分子量分布形状-性能关系
姓名
姓名拼音
LONG Chuanjiang
学号
11855006
学位类型
博士
学位专业
材料科学与工程
导师
陈忠仁
导师单位
化学系
外机构导师
He Chaobin
外机构导师单位
新加坡国立大学
论文答辩日期
2023-02-06
论文提交日期
2023-02-28
学位授予单位
新加坡国立大学
学位授予地点
新加坡
摘要

Molecular weight distribution (MWD) shape is crucial in determining the properties of polymers. Previous studies on comparison of the unimodal and bimodal MWD shape without controlling dispersity, chain branching, phase separation or average molecular weight make it hard to decouple the independent contribution of MWD shape. In this work, we have successfully synthesized unimodal and bimodal polyethylenes with low branching, good miscibility, narrow dispersity and well-defined MWD shape. With this polymer model system, we have systematically studied the impact of bimodal MWD shape compared to unimodal MWD shape in terms of crystallization, rheology and mechanical properties in order to establish the MWD shape-property relationship of semicrystalline polymers.

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2023-03
参考文献列表

(1) Zhai, Z.; Fusco, C.; Morthomas, J.; Perez, M.; Lame, O. Disentangling andLamellar Thickening of Linear Polymers during Crystallization: Simulation ofBimodal and Unimodal Molecular Weight Distribution Systems. ACS Nano2019, 13, 11310-11319(2) Zhai, Z. Q.; Morthomas, J.; Fusco, C.; Perez, M.; Lame, O. Crystallizationand Molecular Topology of Linear Semicrystalline Polymers: Simulation ofUni- and Bimodal Molecular Weight Distribution Systems. Macromolecules2019, 52, 4196-4208(3) Tan, R.; Zhou, D. D.; Liu, B. L.; Sun, Y. X.; Liu, X. X.; Ma, Z.; Kong, D. Y.;He, J. L.; Zhang, Z. B.; Dong, X. H. Precise Modulation of Molecular WeightDistribution for Structural Engineering. Chem. Sci. 2019, 10, 10698-10705(4) Gentekos, D. T.; Fors, B. P. Molecular Weight Distribution Shape as aVersatile Approach to Tailoring Block Copolymer Phase Behavior. ACS MacroLett. 2018, 7, 677-682(5) Gentekos, D. T.; Jia, J.; Tirado, E. S.; Barteau, K. P.; Smilgies, D. M.;DiStasio, R. A., Jr.; Fors, B. P. Exploiting Molecular Weight Distribution Shapeto Tune Domain Spacing in Block Copolymer Thin Films. J. Am. Chem. Soc.2018, 140, 4639-4648(6) Wu, B.-H.; Zhong, Q.-Z.; Xu, Z.-K.; Wan, L.-S. Effects of Molecular WeightDistribution on the Self-Assembly of End-Functionalized Polystyrenes. Polym.Chem. 2017, 8, 4290-4298(7) Sifri, R. J.; Padilla-Velez, O.; Coates, G. W.; Fors, B. P. Controlling theShape of Molecular Weight Distributions in Coordination Polymerization andIts Impact on Physical Properties. J. Am. Chem. Soc. 2020, 142, 1443-1448(8) Nichetti, D.; Manas-Zloczower, I. Viscosity Model for PolydispersePolymer Melts. J. Rheol. 1998, 42, 951-969(9) Kida, T.; Hiejima, Y.; Nitta, K.-h. Rheo-Raman Spectroscopic Study onUniaxial Deformation Behavior of High-Density Polyethylene Solids withVarious Molecular Weight Distributions. Macromolecules 2019, 52, 4590-4600(10) Nadgorny, M.; Gentekos, D. T.; Xiao, Z. Y.; Singleton, S. P.; Fors, B. P.;Connal, L. A. Manipulation of Molecular Weight Distribution Shape as a NewStrategy to Control Processing Parameters. Macromol. Rapid Commun. 2017,38, 1700352(11) Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford University Press:2003.(12) Doi, M. Explanation for the 3.4-Power Law for Viscosity of PolymericLiquids on the Basis of the Tube Model. J. Polym. Sci. B Polym. Phys. 1983, 21,667-684(13) Peticolas, W. L.; Watkins, J. M. The Molecular Structure ofPolyethylene .VII. Melt Viscosity and the Effect of Molecular Weight andBranching. J. Am. Chem. Soc. 1957, 79, 5083-5085(14) Vittorias, I.; Lilge, D.; Baroso, V.; Wilhelm, M. Linear and Non-LinearRheology of Linear Polydisperse Polyethylene. Rheol. Acta 2011, 50, 691-700(15) Doi, M.; Edwards, S. F.; Edwards, S. F. The Theory of Polymer Dynamics;Oxford University Press: Oxford, 1988.(16) De Gennes, P.-G. Reptation of a Polymer Chain in the Presence of FixedObstacles. J. Chem. Phys. 1971, 55, 572-579(17) Descloizeaux, J. Double Reptation vs Simple Reptation in Polymer Melts.Europhys. Lett. 1988, 5, 437-442(18) Tzoganakis, C.; Vlachopoulos, J.; Hamielec, A. E.; Shinozaki, D. M. Effectof Molecular-Weight Distribution on the Rheological and Mechanical-Properties of Polypropylene. Polym. Eng. Sci. 1989, 29, 390-396(19) Munstedt, H. Rheological Properties and Molecular Structure of PolymerMelts. Soft Matter 2011, 7, 2273-2283(20) Thomas, D. P.; Hagan, R. S. Influence of Molecular Weight Distribution onMelt Viscosity, Melt Elasticity, Processing Behavior and Properties ofPolystyrene. Polym. Eng. Sci. 1969, 9, 164-171(21) Xiong, B. J.; Lame, O.; Chenal, J. M.; Rochas, C.; Seguela, R.; Vigier, G.Amorphous Phase Modulus and Micro-Macro Scale Relationship inPolyethylene via in Situ SAXS and WAXS. Macromolecules 2015, 48, 2149-2160(22) Hoffman, J. D.; Miller, R. L. Kinetics of Crystallization from the Melt andChain Folding in Polyethylene Fractions Revisited: Theory and Experiment.Polymer 1997, 38, 3151-3212(23) Reiter, G.; Strobl, G. R. Progress in Understanding of PolymerCrystallization; Springer: Berlin and Heidelberg, 2007.(24) Mandelkern, L. Crystallization of Polymers: Volume 2, Kinetics andMechanisms; Cambridge University Press: Cambridge, 2004.(25) Turnbull, D.; Fisher, J. C. Rate of Nucleation in Condensed Systems. J.Chem. Phys. 1949, 17, 71-73(26) Ghosh, S. K.; Hikosaka, M.; Toda, A.; Yamazaki, S.; Yamada, K. PowerLaw of Molecular Weight of the Nucleation Rate of Folded Chain Crystals ofPolyethylene. Macromolecules 2002, 35, 6985-6991(27) Hannay, N. Treatise on Solid State Chemistry Volume 3 Crystalline andNoncrystalline Solids; Plenum Press: New York, 1976.(28) Nishi, M.; Hikosaka, M.; Toda, A.; Takahashi, M. Molecular WeightDependence of Lateral Growth Rate of Polyethylene (I) - An Extended ChainSingle Crystal. Polymer 1998, 39, 1591-1596(29) Okada, M.; Nishi, M.; Takahashi, M.; Matsuda, H.; Toda, A.; Hikosaka, M.Molecular Weight Dependence of the Lateral Growth Rate of Polyethylene - 2.Folded-Chain Crystals. Polymer 1998, 39, 4535-4539(30) Tung, L. H.; Buckser, S. The Effect of Molecular Weight on theCrystallinity of Polyethylene. J. Phys. Chem. 1959, 62, 1530-1534(31) Mandelkern, L. The Effect of Molecular Weight on the Crystallization,Melting, and Morphology of Long‐Chain Molecules. J. Polym. Sci. C Polym.Symp. 1967, 15, 129-162(32) Humbert, S.; Lame, O.; Seguela, R.; Vigier, G. A Re-Examination of theElastic Modulus Dependence on Crystallinity in Semi-Crystalline Polymers.Polymer 2011, 52, 4899-4909(33) Krigbaum, W. R.; Roe, R. J.; Smith, K. J. A Theoretical Treatment of theModulus of Semi-Crystalline Polymers. Polymer 1964, 5, 533-542(34) Kennedy, M. A.; Peacock, A. J.; Mandelkern, L. Tensile Properties ofCrystalline Polymers: Linear Polyethylene. Macromolecules 1994, 27, 5297-5310(35) Jordens, K.; Wilkes, G. L.; Janzen, J.; Rohlfing, D. C.; Welch, M. B. TheInfluence of Molecular Weight and Thermal History on the Thermal,Rheological, and Mechanical Properties of Metallocene-Catalyzed LinearPolyethylenes. Polymer 2000, 41, 7175-7192(36) Ergoz, E.; Fatou, J. G.; Mandelkern, L. Molecular-Weight Dependence ofCrystallization Kinetics of Linear Polyethylene .1. Experimental Results.Macromolecules 1972, 5, 147-157(37) Nunes, R. W.; Martin, J. R.; Johnson, J. F. Influence of Molecular Weightand Molecular Weight Distribution on Mechanical Properties of Polymers.Polym. Eng. Sci. 1982, 22, 205-228(38) Cai, T.; Ma, Y.; Yin, P. C.; Hu, W. B. Understanding the Growth Rates ofPolymer Cocrystallization in the Binary Mixtures of Different Chain Lengths.J. Phys. Chem. B 2008, 112, 7370-7376(39) Moyassari, A.; Gkourmpis, T.; Hedenqvist, M. S.; Gedde, U. W. MolecularDynamics Simulation of Linear Polyethylene Blends: Effect of Molar MassBimodality on Topological Characteristics and Mechanical Behavior. Polymer2019, 161, 139-150(40) Moyassari, A.; Gkourmpis, T.; Hedenqvist, M. S.; Gedde, U. W. MolecularDynamics Simulations of Short-Chain Branched Bimodal Polyethylene:Topological Characteristics and Mechanical Behavior. Macromolecules 2019,52, 807-818(41) Krumme, A.; Lehtinen, A.; Viikna, A. Crystallisation Behaviour of HighDensity Polyethylene Blends with Bimodal Molar Mass Distribution 1. BasicCharacteristics and Isothermal Crystallisation. Eur. Polym. J. 2004, 40, 359-369(42) Krumme, A.; Lehtinen, A.; Viikna, A. Crystallisation Behaviour of HighDensity Polyethylene Blends with Bimodal Molar Mass Distribution 2. Non-Isothermal Crystallisation. Eur. Polym. J. 2004, 40, 371-378(43) Shen, H. W.; Xie, B. H.; Yang, W.; Yang, M. B. Non-IsothermalCrystallization of Polyethylene Blends with Bimodal Molecular WeightDistribution. Polym. Test. 2013, 32, 1385-1391(44) Lim, K. L. K.; Ishak, Z. A. M.; Ishiaku, U. S.; Fuad, A. M. Y.; Yusof, A. H.;Czigany, T.; Pukanszky, B.; Ogunniyi, D. S. High-DensityPolyethylene/Ultrahigh-Molecular-Weight Polyethylene Blend. I. TheProcessing, Thermal, and Mechanical Properties. J. Appl. Polym. Sci. 2005, 97,413-425(45) Bhateja, S. K.; Andrews, E. H. Thermal, Mechanical, and RheologicalBehavior of Blends of Ultrahigh and Normal-Molecular-Weight LinearPolyethylenes. Polym. Eng. Sci. 1983, 23, 888-894(46) Kida, T.; Tanaka, R.; Hiejima, Y.; Nitta, K. H.; Shiono, T. Improving theStrength of Polyethylene Solids by Simple Controlling of the Molecular WeightDistribution. Polymer 2021, 218, 123526(47) Xu, L.; Huang, Y. F.; Xu, J. Z.; Ji, X.; Li, Z. M. Improved PerformanceBalance of Polyethylene by Simultaneously Forming Oriented Crystals andBlending Ultrahigh-Molecular-Weight Polyethylene. RSC Adv. 2014, 4, 1512-1520(48) Fernandez-Ballester, L.; Thurman, D. W.; Zhou, W. J.; Kornfield, J. A.Effect of Long Chains on the Threshold Stresses for Flow-InducedCrystallization in iPP: Shish Kebabs vs Sausages. Macromolecules 2012, 45,6557-6570(49) Yang, L.; Somani, R. H.; Sics, I.; Hsiao, B. S.; Kolb, R.; Fruitwala, H.; Ong,C. Shear-Induced Crystallization Precursor Studies in Model PolyethyleneBlends by in-Situ Rheo-SAXS and Rheo-WAXD. Macromolecules 2004, 37,4845-4859(50) Keum, J. K.; Zuo, F.; Hsiao, B. S. Formation and Stability of Shear-InducedShish-Kebab Structure in Highly Entangled Melts of UHMWPE/HDPE Blends.Macromolecules 2008, 41, 4766-4776(51) Seki, M.; Thurman, D. W.; Oberhauser, J. P.; Kornfield, J. A. Shear-Mediated Crystallization of Isotactic Polypropylene: The Role of Long Chain-Long Chain Overlap. Macromolecules 2002, 35, 2583-2594(52) Chaudhuri, K.; Lele, A. K. Rheological Quantification of the Extent ofDissolution of Ultrahigh Molecular Weight Polyethylene in Melt-CompoundedBlends with High Density Polyethylene. J. Rheol. 2020, 64, 1-12(53) Boscoletto, A. B.; Franco, R.; Scapin, M.; Tavan, M. An Investigation onRheological and Impact Behaviour of High Density and Ultra High MolecularWeight Polyethylene Mixtures. Eur. Polym. J. 1997, 33, 97-105(54) Shen, H.; He, L.; Fan, C.; Xie, B.; Yang, W.; Yang, M. Effective Dissolutionof UHMWPE in HDPE Improved by High Temperature Melting andSubsequent Shear. Polym. Eng. Sci. 2015, 55, 270-276(55) Krishnaswamy, R. K.; Yang, Q.; Fernandez-Ballester, L.; Kornfield, J. A.Effect of the Distribution of Short-Chain Branches on Crystallization Kineticsand Mechanical Properties of High-Density Polyethylene. Macromolecules2008, 41, 1693-1704(56) He, X. L.; Zha, X. J.; Zhu, X.; Qi, X.; Liu, B. P. Effect of Short ChainBranches Distribution on Fracture Behavior of Polyethylene Pipe Resins. Polym.Test. 2018, 68, 219-228(57) Hu, Y. L.; Shao, Y. Q.; Liu, Z.; He, X. L.; Liu, B. P. Dominant Effects ofShort-Chain Branching on the Initial Stage of Nucleation and Formation of TieChains for Bimodal Polyethylene as Revealed by Molecular DynamicsSimulation. Polymers 2019, 11, 1840(58) Hu, Y. L.; Shao, Y. Q.; Liu, Z.; He, X. L.; Liu, B. P. Effect of Short-ChainBranching on the Tie Chains and Dynamics of Bimodal Polyethylene:Molecular Dynamics Simulation. Eur. Polym. J. 2018, 103, 312-321(59) DesLauriers, P. J.; McDaniel, M. P.; Rohlfing, D. C.; Krishnaswamy, R. K.;Secora, S. J.; Benham, E. A.; Maeger, P. L.; Wolfe, A. R.; Sukhadia, A. M.;Beaulieu, B. B. A Comparative Study of Multimodal vs. Bimodal PolyethylenePipe Resins for PE-100 Applications. Polym. Eng. Sci. 2005, 45, 1203-1213(60) Bohm, L. L.; Enderle, H. F.; Fleissner, M. High-Density Polyethylene PipeResins. Adv. Mater. 1992, 4, 234-238(61) Nezbedova, E.; Hutar, P.; Zouhar, M.; Knesl, Z.; Sadilek, J.; Nahlik, L. TheApplicability of the Pennsylvania Notch Test for a New Generation of PE PipeGrades. Polym. Test. 2013, 32, 106-114(62) Frank, A.; Hutař, P.; Pinter, G. Numerical Assessment of PE 80 and PE 100Pipe Lifetime Based on Paris‐Erdogan Equation. Macromol. Symp. 2012, 311,112-121(63) Hubert, L.; David, L.; Seguela, R.; Vigier, G.; Degoulet, C.; Germain, Y.Physical and Mechanical Properties of Polyethylene for Pipes in Relation toMolecular Architecture. I. Microstructure and Crystallisation Kinetics. Polymer2001, 42, 8425-8434(64) Dominguez, C.; Robledo, N.; Paredes, B.; Garcia-Munoz, R. A. StrainHardening Test on the Limits of Slow Crack Growth Evaluation in HighResistance Polyethylene Resins: Effect of Comonomer Type. Polym. Test. 2020,81, 106155(65) Chaudhuri, K.; Poddar, S.; Pol, H.; Lele, A.; Mathur, A.; Srinivasa Rao, G.S.; Jasra, R. The Effect of Processing Conditions on the Rheological Propertiesof Blends of Ultra High Molecular Weight Polyethylene with High‐DensityPolyethylene. Polym. Eng. Sci. 2018, 59, 821-829(66) Chen, Y.; Li, Y.; Zou, H. W.; Liang, M. Effect of Solid-State Shear Millingon Structure and Properties of HDPE/UHMWPE Blends. J. Appl. Polym. Sci.2014, 131, 39916(67) Diop, M. F.; Burghardt, W. R.; Torkelson, J. M. Well-Mixed Blends ofHDPE and Ultrahigh Molecular Weight Polyethylene with Major Improvementsin Impact Strength Achieved via Solid-State Shear Pulverization. Polymer 2014,55, 4948-4958(68) Yang, H.; Hui, L.; Zhang, J.; Chen, P.; Li, W. Effect of Entangled State ofNascent UHMWPE on Structural and Mechanical Properties ofHDPE/UHMWPE Blends. J. Appl. Polym. Sci. 2017, 134, 44728(69) Li, Y. M.; Wang, Y.; Bai, L.; Zhou, H. L. Z.; Yang, W.; Yang, M. B.Dynamic Rheological Behavior of HDPE/UHMWPE Blends. J. Macromol. Sci.,Part B: Phys. 2011, 50, 1249-1259(70) Shen, H. W.; He, L.; Fan, C. H.; Xie, B. H.; Yang, W.; Yang, M. B.Improving the Integration of HDPE/UHMWPE Blends by High TemperatureMelting and Subsequent Shear. Mater. Lett. 2015, 138, 247-250(71) Tincer, T.; Coskun, M. Melt Blending of Ultra-High-Molecular-Wight andHigh-Density Polyethylene - The Effect of Mixing Rate on Thermal,Mechanical, and Morphological Properties. Polym. Eng. Sci. 1993, 33, 1243-1250(72) Albunia, A. R.; Prades, F.; Jeremic, D. Multimodal Polymers withSupported Catalysts; Springer: 2019.(73) Tohi, Y.; Makio, H.; Matsui, S.; Onda, M.; Fujita, T. Polyethylenes withUni-, Bi-, and Trimodal Molecular Weight Distributions Produced with a SingleBis(phenoxy-imine)Zirconium Complex. Macromolecules 2003, 36, 523-525(74) Tohi, Y.; Nakano, T.; Makio, H.; Matsui, S.; Fujita, T.; Yamaguchi, T.Polyethylenes Having Well-Defined Bimodal Molecular Weight DistributionsFormed with Bis(phenoxy-imine) Zr Complexes. Macromol. Chem. Phys. 2004,205, 1179-1186(75) Zou, C.; Dai, S. Y.; Chen, C. L. Ethylene Polymerization andCopolymerization Using Nickel 2-Iminopyridine-N-oxide Catalysts:Modulation of Polymer Molecular Weights and Molecular-Weight Distributions.Macromolecules 2018, 51, 49-56(76) Wang, D. Q.; Zhou, S. M.; Liu, Y. X.; Kang, X. H.; Liu, S. F.; Li, Z. B.;Braunstein, P. Controlling Polyethylene Molecular Weights and DistributionsUsing Chromium Complexes Supported by SNN-Tridentate Ligands.Macromolecules 2022, 55, 2433-2443(77) Yu, F.; Yang, Y. Q.; He, D. F.; Gong, D. R.; Chen, Z. R. Pressure-SensitiveSupported FI Catalyst for the Precise Synthesis of Uni- and BimodalPolyethylene. Ind. Eng. Chem. Res. 2017, 56, 4684-4689(78) Alt, F. P.; Bohm, L. L.; Enderle, H. F.; Berthold, J. Bimodal Polyethylene -Interplay of Catalyst and Process. Macromol. Symp. 2001, 163, 135-143(79) Ruff, M.; Paulik, C. Controlling Polyolefin Properties by In-ReactorBlending, 1-Polymerization Process, Precise Kinetics, and Molecular Propertiesof UHMW-PE Polymers. Macromol. React. Eng. 2012, 6, 302-317(80) Liu, W. F.; Guo, S.; Bu, Z. Y.; Fan, H.; Wang, W. J.; Li, B. G. Synthesis ofMolecular Weight Controllable Bimodal Polyethylene from Fluorinated FI-TiCatalyst Coupled with ZnEt2. Eur. Polym. J. 2013, 49, 1823-1831(81) Dong, Z.; Huang, W. J.; Liu, X. Q.; Yu, F.; Long, C. J.; Feng, S. T.; Luo,L.; Chen, Z. R. Molecular Bottlebrush Supported Mono(phenoxy-imine) MetalComplexes: Synthesis and Ethylene Polymerization. Macromolecules 2021, 54,9385-9392(82) Stuerzel, M.; Thomann, Y.; Enders, M.; Muelhaupt, R. Graphene-Supported Dual-Site Catalysts for Preparing Self-Reinforcing PolyethyleneReactor Blends Containing UHMWPE Nanoplatelets and in Situ UHMWPEShish-Kebab Nanofibers. Macromolecules 2014, 47, 4979-4986(83) Kurek, A.; Mark, S.; Enders, M.; Sturzel, M.; Mulhaupt, R. Two-Site SilicaSupported Fe/Cr Catalysts for Tailoring Bimodal Polyethylenes with VariableContent of UHMWPE. J. Mol. Cat. A Chem. 2014, 383, 53-57(84) Kurek, A.; Xalter, R.; Sturzel, M.; Mulhaupt, R. Silica Nanofoam (NF)Supported Single- and Dual-Site Catalysts for Ethylene Polymerization withMorphology Control and Tailored Bimodal Molar Mass Distributions.Macromolecules 2013, 46, 9197-9201(85) Cho, H. S.; Choi, Y. H.; Lee, W. Y. Characteristics of EthylenePolymerization over Ziegler-Natta/Metallocene Catalysts - Comparisonbetween Hybrid and Mixed Catalysts. Catal. Today 2000, 63, 523-530(86) Moreno, J.; van Grieken, R.; Carrero, A.; Paredes, B. Development ofNovel Chromium Oxide/Metallocene Hybrid Catalysts for BimodalPolyethylene. Polymer 2011, 52, 1891-1899(87) Hong, S. C.; Mihan, S.; Lilge, D.; Delux, L.; Rief, U. ImmobilizedMe2Si(C5Me4)(N-tBu)TiCl2/(nBuCp)2ZrCl2 Hybrid Metallocene CatalystSystem for the Production of Poly(ethylene-co-hexene) with Pseudo-BimodalMolecular Weight and Inverse Comonomer Distribution. Polym. Eng. Sci. 2007,47, 131-139(88) Zhao, N.; Cheng, R.; He, X.; Liu, Z.; Liu, B. A Novel SiO2 Supported Cr-V Bimetallic Catalyst Making Polyethylene and Ethylene/1-HexeneCopolymers with Bimodal Molecular Weight Distribution. Macromol. Chem.Phys. 2014, 215, 1753-1766(89) Liu, B.; Tian, Z.; Jin, Y.; Zhao, N.; Liu, B. Toward the Optimization of aCr-V Bimetallic Catalyst for Producing Bimodal Polyethylene: Effect ofVanadium Content and Calcination Temperature. Macromol. Chem. Phys. 2018,219, 1800021(90) Sturzel, M.; Mihan, S.; Mulhaupt, R. From Multisite PolymerizationCatalysis to Sustainable Materials and All-Polyolefin Composites. Chem. Rev.2016, 116, 1398-1433(91) Glaser, R. H.; Mandelkern, L. On the Fractionation of Homopolymersduring Crystallization from the Pure Melt. J. Polym. Sci. B Polym. Phys. 1988,26, 221-234(92) Dlugosz, J.; Fraser, G. V.; Grubb, D.; Keller, A.; Odell, J. A.; Goggin, P. L.Study of Crystallization and Isothermal Thickening in Polyethylene UsingSAXD, Low-Frequency Raman-Spectroscopy and Electron-Microscopy.Polymer 1976, 17, 471-480(93) Kardos, J. L.; Li, H. M.; Huckshol.Ka. Fractionation of LinearPolyethylene during Bulk Crystallization under High Pressure. J. Polym. Sci. A-2 Polym. Phys. 1971, 9, 2061-2080(94) Mehta, A.; Wunderlich, B. A Study of Molecular Fractionation during theCrystallization of Polymers. Colloid. Polym. Sci. 1975, 253, 193-205(95) Pearson, D. S.; Fetters, L. J.; Graessley, W. W.; Strate, G. V.; Vonmeerwall,E. Viscosity and Self-Diffusion Coefficient of Hydrogenated Polybutadiene.Macromolecules 1994, 27, 711-719(96) Wood-Adams, P. M.; Dealy, J. M.; deGroot, A. W.; Redwine, O. D. Effectof Molecular Structure on the Linear Viscoelastic Behavior of Polyethylene.Macromolecules 2000, 33, 7489-7499(97) Martin, J. R.; Cooper, A. R.; Johnson, J. F. Mechanical Properties ofPolymers - Influence of Molecular-Weight and Molecular-Weight Distribution.J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1972, 8, 57-199(98) Wunderlich, B.; Cormier, C. M. Heat of Fusion of Polyethylene. J. Polym.Sci. A-2 Polym. Phys. 1967, 5, 987-988(99) Cross, M. M. Rheology of Non-Newtonian Fluids - A New Flow Equationfor Pseudoplastic Systems. J. Colloid Sci. 1965, 20, 417-437(100) Hermans, P. H.; Platzek, P. Beitrge zur Kenntnis desDeformationsmechanismus und der Feinstruktur der Hydratzellulose. Colloid.Polym. Sci. 1939, 88, 73-78(101) Shahin, M. M.; Olley, R. H.; Blissett, M. J. Refinement of EtchingTechniques to Reveal Lamellar Profiles in Polyethylene Banded Spherulites. J.Polym. Sci. B Polym. Phys. 1999, 37, 2279-2286(102) Mitani, M.; Mohri, J.; Yoshida, Y.; Saito, J.; Ishii, S.; Tsuru, K.; Matsui,S.; Furuyama, R.; Nakano, T.; Tanaka, H.; Kojoh, S.; Matsugi, T.; Kashiwa, N.;Fujita, T. Living Polymerization of Ethylene Catalyzed by Titanium ComplexesHaving Fluorine-Containing Phenoxy-Imine Chelate Ligands. J. Am. Chem. Soc.2002, 124, 3327-3336(103) Inci, B.; Lieberwirth, I.; Steffen, W.; Mezger, M.; Graf, R.; Landfester, K.;Wagener, K. B. Decreasing the Alkyl Branch Frequency in PrecisionPolyethylene: Effect of Alkyl Branch Size on Nanoscale Morphology.Macromolecules 2012, 45, 3367-3376(104) Rojas, G.; Berda, E. B.; Wagener, K. B. Precision Polyolefin Structure:Modeling Polyethylene Containing Alkyl Branches. Polymer 2008, 49, 2985-2995(105) Rastogi, S.; Lippits, D. R.; Peters, G. W. M.; Graf, R.; Yao, Y. F.; Spiess,H. W. Heterogeneity in Polymer Melts from Melting of Polymer Crystals.Nat.Mater. 2005, 4, 635-641(106) Rastogi, S.; Lippits, D. R.; Hohne, G. W. H.; Mezari, B.; Magusin, P. TheRole of the Amorphous Phase in Melting of Linear UHMW-PE; Implicationsfor Chain Dynamics. J. Phys. Condens. Matter 2007, 19, 205122(107) Pandey, A.; Champouret, Y.; Rastogi, S. Heterogeneity in the Distributionof Entanglement Density during Polymerization in Disentangled UltrahighMolecular Weight Polyethylene. Macromolecules 2011, 44, 4952-4960(108) Ronca, S.; Forte, G.; Tjaden, H.; Rastogi, S. Solvent-Free Solid-State-Processed Tapes of Ultrahigh-Molecular-Weight Polyethylene: Influence ofMolar Mass and Molar Mass Distribution on the Tensile Properties. Ind. Eng.Chem. Res. 2015, 54, 7373-7381(109) Lippits, D. R.; Rastogi, S.; Hohne, G. W. H. Melting Kinetics in Polymers.Phys. Rev. Lett. 2006, 96, 218303(110) Pandey, A.; Toda, A.; Rastogi, S. Influence of Amorphous Component onMelting of Semicrystalline Polymers. Macromolecules 2011, 44, 8042-8055(111) Fatou, J. G.; Mandelkern, L. Effect of Molecular Weight on MeltingTemperature and Fusion of Polyethylene. J. Phys. Chem. 1965, 69, 417-428(112) D'Agnillo, L.; Soares, J. B. P.; Penlidis, A. Controlling Molecular WeightDistributions of Polyethylene by Combining Soluble Metallocene MAOCatalysts. J. Polym. Sci. A Polym. Chem. 1998, 36, 831-840(113) Cho, H. S.; Chung, J. S.; Lee, W. Y. Control of Molecular WeightDistribution for Polyethylene Catalyzed over Ziegler-Natta/Metallocene Hybridand Mixed Catalysts. J. Mol. Cat. A Chem. 2000, 159, 203-213(114) Zhao, Y. L.; Wang, L.; Yu, H. J.; Jing, G. H.; Li, C.; Chen, Y. S.; Saleem,M. Facile Preparation of Bimodal Polyethylene with Tunable Molecular WeightDistribution from Ethylene Polymerization Catalyzed by Binary CatalyticSystem in the Presence of Diethyl Zinc. J. Polym. Res. 2014, 21,(115) Wach, R. A.; Wolszczak, P.; Adamus-Wlodarczyk, A. Enhancement ofMechanical Properties of FDM-PLA Parts via Thermal Annealing. Macromol.Mater. Eng. 2018, 303, 1800169(116) Mileva, D.; Androsch, R.; Radusch, H. J. Effect of Structure on LightTransmission in Isotactic Polypropylene and Random Propylene-1-ButeneCopolymers. Polym. Bull. 2009, 62, 561-571(117) Bai, L.; Zhao, X.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Effect ofTemperature, Crystallinity and Molecular Chain Orientation on the ThermalConductivity of Polymers: A Case Study of PLLA. J. Mater. Sci. 2018, 53,10543-10553(118) Kim, B. J.; Lee, H. S.; Lee, J. S.; Cho, S.; Kim, H.; Son, H. J.; Kim, H.;Ko, M. J.; Park, S.; Kang, M. S.; Oh, S. Y.; Kim, B.; Cho, J. H. Correlationbetween Crystallinity, Charge Transport, and Electrical Stability in anAmbipolar Polymer Field-Effect Transistor Based on Poly(naphthalene-altdiketopyrrolopyrrole).J. Phys. Chem. C 2013, 117, 11479-11486(119) Lauritzen, J. I.; Hoffman, J. D. Theory of Formation of Polymer Crystalswith Folded Chains in Dilute Solution. J. Res. Natl. Bur. Stand. A Phys. Chem.1960, 64, 73-102(120) Fatou, J. G.; Mandelkern, L. The Effect of Molecular Weight on theMelting Temperature and Fusion of Polyethylene. J. Phys. Chem 1965, 69, 417-428(121) Fatou, J. G.; Marco, C.; Mandelkern, L. The Influence of MolecularWeight on the Regime Crystallization of Linear Polyethylene. Polymer 1990,31, 1685-1693(122) Maxfield, J.; Mandelkern, L. Crystallinity, Supermolecular Structure, andThermodynamic Properties of Linear Polyethylene Fractions. Macromolecules1977, 10, 1141-1153(123) Voigtmartin, I. G.; Mandelkern, L. A Quantitative Electron MicroscopicStudy of the Crystallite Structure of Molecular Weight Fractions of LinearPolyethylene. J. Polym. Sci. B Polym. Phys. 1984, 22, 1901-1917(124) Voigtmartin, I. G.; Fischer, E. W.; Mandelkern, L. Morphology of Melt-Crystallized Linear Polyethylene Fractions and Its Dependence on MolecularWeight and Crystallization Temperature. J. Polym. Sci. B Polym. Phys. 1980,18, 2347-2367(125) Nishi, M.; Hikosaka, M.; Ghosh, S. K.; Toda, A.; Yamada, K. MolecularWeight Dependence of Primary Nucleation Rate of Polyethylene I. An ExtendedChain Single Crystal. Polym. J. 1999, 31, 749-758(126) Mamun, A.; Umemoto, S.; Ishihara, N.; Okui, N. Influence of ThermalHistory on Primary Nucleation and Crystal Growth Rates of IsotacticPolystyrene. Polymer 2006, 47, 5531-5537(127) Lopez-Barron, C. R.; Hagadorn, J. R.; Throckmorton, J. A. IsothermalCrystallization Kinetics of alpha-Olefin Molecular Bottlebrushes.Macromolecules 2020, 53, 7439-7449(128) Ross, G. S.; Frolen, L. J. Homogeneous Nucleation in Polyethylene:Molecular Weight Dependence. J. Res. Natl. Bur. Stand. A Phys. Chem. 1975,79, 701-711(129) Bassett, D. C.; Hodge, A. M.; Olley, R. H. Lamellar Morphologies inMelt-crystallized Polyethylene. Faraday Discuss. Chem. Soc. 1979, 68, 218-224(130) Tsai, C. J.; Chen, M.; Lu, H. Y.; Chang, W. C.; Chen, C. H. Crystal GrowthRates and Master Curves of Poly(ethylene succinate) and Its CopolyestersUsing a Nonisothermal Method. J. Polym. Sci. B Polym. Phys. 2010, 48, 932-939(131) Chew, S.; Griffiths, J. R.; Stachurski, Z. H. The Crystallization Kineticsof Polyethylene under Isothermal and Non-Isothermal Conditions. Polymer1989, 30, 874-881(132) Doi, M.; Graessley, W. W.; Helfand, E.; Pearson, D. S. Dynamics ofPolymers in Polydisperse Melts. Macromolecules 1987, 20, 1900-1906(133) Read, D. J.; Jagannathan, K.; Sukumaran, S. K.; Auhl, D. A Full-ChainConstitutive Model for Bidisperse Blends of Linear Polymers. J. Rheol. 2012,56, 823-873(134) Read, D. J.; Shivokhin, M. E.; Likhtman, A. E. Contour LengthFluctuations and Constraint Release in Entangled Polymers: Slip-SpringSimulations and Their Implications for Binary Blend Rheology. J. Rheol. 2018,62, 1017-1036(135) Wang, X. H.; Liu, R. G.; Wu, M.; Wang, Z. G.; Huang, Y. Effect of ChainDisentanglement on Melt Crystallization Behavior of Isotactic Polypropylene.Polymer 2009, 50, 5824-5827(136) Zou, L. Y.; Zhang, W. L. Molecular Dynamics Simulations of the Effectsof Entanglement on Polymer Crystal Nucleation. Macromolecules 2022, 55,4899-4906(137) Okada, K.; Watanabe, K.; Wataoka, I.; Toda, A.; Sasaki, S.; Inoue, K.;Hikosaka, M. Size Distribution and Shape of Nano-Nucleus of PolyethyleneSimultaneously Determined by SAXS. Polymer 2007, 48, 382-392(138) Bassett, D. C.; Hodge, A. M. On the Morphology of Melt-CrystallizedPolyethylene. III. Spherulitic Organization. Proc. R. Soc. Lond. A Math. Phys.Eng. Sci. 1981, 377, 61-71(139) Yi, P.; Locker, C. R.; Rutledge, G. C. Molecular Dynamics Simulation ofHomogeneous Crystal Nucleation in Polyethylene. Macromolecules 2013, 46,4723-4733(140) Yang, H. Q.; Hui, L.; Zhang, J. J.; Chen, P.; Li, W. Effect of EntangledState of Nascent UHMWPE on Structural and Mechanical Properties ofHDPE/UHMWPE Blends. J. Appl. Polym. Sci. 2017, 134, 44728(141) Lu, X. C.; Zhou, Z. Q.; Brown, N. A Sensitive Mechanical Test for SlowCrack Growth in Polyethylene. Polym. Eng. Sci. 1997, 37, 1896-1900(142) Huang, Y. L.; Brown, N. The Effect of Molecular-Weight on Slow Crack-Growth in Linear Polyethylene Homopolymers. J. Mater. Sci. 1988, 23, 3648-3655(143) Hubert, L.; David, L.; Seguela, R.; Vigier, G.; Corfias-Zuccalli, C.;Germain, Y. Physical and Mechanical Properties of Polyethylene for Pipes inRelation to Molecular Architecture. II. Short-Term Creep of Isotropic andDrawn Materials. J. Appl. Polym. Sci. 2002, 84, 2308-2317(144) Huang, Y. Q.; Zhang, Q. L.; Lu, X. Y.; Gong, Y. B.; Zhou, H.; Feng, J. C.Comparative Investigation on Step-cycle Tensile Behaviors of Two BimodalPipe-grade Polyethylene with Different Slow Crack Growth Resistance. Chin.J. Polym. Sci. 2020, 38, 611-619(145) Strobl, G. R.; Schneider, M. Direct Evaluation of the Electron DensityCorrelation Function of Partially Crystalline Polymers. J. Polym. Sci. B Polym.Phys. 1980, 18, 1343-1359(146) Rungswang, W.; Jarumaneeroj, C.; Parawan, T.; Jirasukho, P.; Juabrum,S.; Soontaranon, S.; Rugmai, S. Influences of Molecular Weight and ThermalHistory on Partial Melting of Polyethylene: Existence of Non-LamellarCrystallite. Polymer 2020, 211, 123096(147) Luo, S.; Grubb, D. T.; Netravali, A. N. The Effect of Molecular Weight onthe Lamellar Structure, Thermal and Mechanical Properties ofPoly(hydroxybutyrate-co-hydroxyvalerates). Polymer 2002, 43, 4159-4166(148) Kida, T.; Hiejima, Y.; Nitta, K. H. Microstructural Interpretation ofInfluences of Molecular Weight on the Tensile Properties of High-DensityPolyethylene Solids Using Rheo-Raman Spectroscopy. Macromolecules 2021,54, 225-234(149) Robelinsouffache, E.; Rault, J. Origin of the Long Period and Crystallinityin Quenched Semicrystalline Polymers. 1. Macromolecules 1989, 22, 3581-3594(150) Stack, G. M.; Mandelkern, L.; Voigtmartin, I. G. Changes in CrystalliteSize Distribution During the Isothermal Crystallization of Linear Polyethylene.Polym. Bull. 1982, 8, 421-428(151) Rault, J.; Robelinsouffache, E. Long Periods in Slow-Cooled Linear andBranched Polyethylene: Part II. J. Polym. Sci. B Polym. Phys. 1989, 27, 1349-1373(152) Rault, J.; Robelin, E. Crystallization of quenched polyethylene. Part III :Mixtures of fractions. J. Physique 1982, 43, 1437-1452(153) Huang, Y. L.; Brown, N. Dependence of Slow Crack Growth inPolyethylene on Butyl Branch Density: Morphology and Theory. J. Polym. Sci.B Polym. Phys. 1991, 29, 129-137(154) Liao, T.; Yang, X.; Zhao, X. T.; Tang, Y. J.; Jiang, Z. Y.; Men, Y. F.Gaussian and Non-Gaussian Distributions of Fracture Properties in TensileStretching of High-Density Polyethylene. Macromolecules 2021, 54, 8860-8874(155) Humbert, S.; Lame, O.; Chenal, J. M.; Rochas, C.; Vigier, G. Small StrainBehavior of Polyethylene: In Situ SAXS Measurements. J. Polym. Sci. B Polym.Phys. 2010, 48, 1535-1542(156) Haward, R. N.; Thackray, G. The Use of a Mathematical Model toDescribe Isothermal Stress-Strain Curves in Glassy Thermoplastics. Proc. Roy.Soc. A 1968, 302, 453-472(157) Haward, R. N. Strain Hardening of Thermoplastics. Macromolecules1993, 26, 5860-5869(158) Popli, R.; Mandelkern, L. Influence of Structural and MorphologicalFactors on the Mechanical Properties of the Polyethylenes. J. Polym. Sci. BPolym. Phys. 1987, 25, 441-483(159) Seguela, R. On the Natural Draw Ratio of Semi-Crystalline Polymers:Review of the Mechanical, Physical and Molecular Aspects. Macromol. Mater.Eng. 2007, 292, 235-244(160) Men, Y.; Rieger, J.; Strobl, G. Role of the Entangled Amorphous Networkin Tensile Deformation of Semicrystalline Polymers. Phys. Rev. Lett. 2003, 91,095502(161) Smith, P.; Lemstra, P. J.; Booij, H. C. Ultradrawing of High-Molecular-Weight Polyethylene Cast from Solution. II. Influence of Initial PolymerConcentration. J. Polym. Sci. B Polym. Phys. 1981, 19, 877-888(162) Christakopoulos, F.; Bersenev, E.; Grigorian, S.; Brem, A.; Ivanov, D. A.;Tervoort, T. A.; Litvinov, V. Melting-Induced Evolution of Morphology,Entanglement Density, and Ultradrawability of Solution-Crystallized Ultrahigh-Molecular-Weight Polyethylene. Macromolecules 2021, 54, 5683-5693(163) Spalding, M. A.; Chatterjee, A. Handbook of Industrial Polyethylene andTechnology: Definitive Guide to Manufacturing, Properties, Processing,Applications and Markets Set; John Wiley & Sons: Hoboken, 2017.(164) Kim, Y. S.; Chung, C. I.; Lai, S. Y.; Hyun, K. S. Processability ofPolyethylene Homopolymers and Copolymers with Respect to Their MolecularStructure. Korean J. Chem. Eng. 1996, 13, 294-303(165) Wagner, M. H.; Bastian, H.; Hachmann, P.; Meissner, J.; Kurzbeck, S.;Munstedt, H.; Langouche, F. The Strain-Hardening Behaviour of Linear andLong-Chain-Branched Polyolefin Melts in Extensional Flows. Rheol. Acta 2000,39, 97-109(166) Andreopoulos, A.; Kampouris, E. Mechanical Properties of CrosslinkedPolyethylene. J. Appl. Polym. Sci. 1986, 31, 1061-1068(167) Ren, Y. Q.; Sun, X. J.; Chen, L. L.; Li, Y. F.; Sun, M. M.; Duan, X. L.;Liang, W. B. Structures and Impact Strength Variation of ChemicallyCrosslinked High-Density Polyethylene: Effect of Crosslinking Density. RSCAdv. 2021, 11, 6791-6797(168) McKellop, H.; Shen, F. W.; Lu, B.; Campbell, P.; Salovey, R.Development of an Extremely Wear-Resistant Ultra High Molecular WeightPolyethylene for Total Hip Replacements. J. Orthop. Res. 1999, 17, 157-167(169) Jalali, A.; Shahbikian, S.; Huneault, M. A.; Elkoun, S. Effect of MolecularWeight on the Shear-Induced Crystallization of Poly(lactic acid). Polymer 2017,112, 393-401(170) Stern, C.; Frick, A.; Weickert, G. Relationship between the Structure andMechanical Properties of Polypropylene: Effects of the Molecular Weight andShear-Induced Structure. J. Appl. Polym. Sci. 2007, 103, 519-533(171) Liu, Y. T.; Gao, S. M.; Hsiao, B. S.; Norman, A.; Tsou, A. H.;Throckmorton, J.; Doufas, A.; Zhang, Y. P. Shear Induced Crystallization ofBimodal and Unimodal High Density Polyethylene. Polymer 2018, 153, 223-231(172) Wang, Z. B.; Zhu, M. J.; Song, T.; Li, X. K.; Hsiao, B. S. Shear-InducedCrystallization of Unimodal/Bimodal Polyethylene at High TemperaturesAffected by C4 Short-Branching. Polymer 2021, 233,(173) Chen, Z. C.; Lei, J.; Gao, X. Q.; Deng, C.; Gao, L.; Shen, K. Z.Morphologies and Mechanical Properties of HDPE Induced by Small Amountof High-Molecular-Weight Polyolefin and Shear Stress Produced by DynamicPacking Injection Molding. J. Appl. Polym. Sci. 2008, 110, 2483-2487(174) Hofmann, D.; Kurek, A.; Thomann, R.; Schwabe, J.; Mark, S.; Enders,M.; Hees, T.; Mulhaupt, R. Tailored Nanostructured HDPE Wax/UHMWPEReactor Blends as Additives for Melt-Processable All-Polyethylene Compositesand in Situ UHMWPE Fiber Reinforcement. Macromolecules 2017, 50, 8129-8139(175) Sturzel, M.; Hees, T.; Enders, M.; Thomann, Y.; Blattmann, H.; Mulhaupt,R. Nanostructured Polyethylene Reactor Blends with Tailored Trimodal MolarMass Distributions as Melt-Processable All-Polymer Composites.Macromolecules 2016, 49, 8048-8060(176) Aguilar, M.; Vega, J. F.; Sanz, E.; Martinez-Salazar, J. New Aspects onthe Rheological Behaviour of Metallocene Catalysed Polyethylenes. Polymer2001, 42, 9713-9721(177) Gradshteĭn, I. S.; Ryzhik, I. M.; Jeffrey, A. Table of Integrals, Series, andProducts; Academic Press: San Diego, 2000.(178) Rauwendaal, C. Polymer Extrusion; Hanser Publishers: Munich, 2014.(179) Cox, W. P.; Merz, E. H. Correlation of Dynamic and Steady FlowViscosities. J. Polym. Sci. 1958, 28, 619-622(180) Yang, H. R.; Lei, J.; Li, L. B.; Fu, Q.; Li, Z. M. Formation of Inter linkedShish-Kebabs in Injection-Molded Polyethylene under the Coexistence ofLightly Cross-Linked Chain Network and Oscillation Shear Flow.Macromolecules 2012, 45, 6600-6610(181) Xu, L.; Chen, C.; Zhong, G. J.; Lei, J.; Xu, J. Z.; Hsiao, B. S.; Li, Z. M.Tuning the Superstructure of Ultrahigh-Molecular-Weight Polyethylene/Low-Molecular-Weight Polyethylene Blend for Artificial Joint Application. ACSAppl. Mater. Interfaces 2012, 4, 1521-1529(182) Zhao, X. T.; Liao, T.; Lu, Y.; Jiang, Z. Y.; Men, Y. F. Formation andDistribution of the Mesophase in Ultrasonic Micro-Injection-Molded IsotacticPolypropylene. Macromolecules 2021, 54, 5167-5177144(183) Wang, Z.; Ma, Z.; Li, L. B. Flow-Induced Crystallization of Polymers:Molecular and Thermodynamic Considerations. Macromolecules 2016, 49,1505-1517(184) Housmans, J. W.; Peters, G. W. M.; Meijer, H. E. H. Flow-InducedCrystallization of Propylene/Ethylene Random Copolymers. J. Therm. Anal.Calorim. 2009, 98, 693-705(185) Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino,T.; Shibayama, M.; Kornfield, J. A. Molecular Basis of the Shish-KebabMorphology in Polymer Crystallization. Science 2007, 316, 1014-1017(186) Cui, K. P.; Ma, Z.; Tian, N.; Su, F. M.; Liu, D.; Li, L. B. Multiscale andMultistep Ordering of Flow-Induced Nucleation of Polymers. Chem. Rev. 2018,118, 1840-1886(187) Andrews, J. M.; Ward, I. M. Cold-Drawing of High Density Polyethylene.J. Mater. Sci. 1970, 5, 411-417

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/479624
专题理学院_化学系
推荐引用方式
GB/T 7714
Long CJ. UNDERSTANDING THE MOLECULAR WEIGHT DISTRIBUTION SHAPE-PROPERTY RELATIONSHIP BASED ON LINEAR UNIMODAL AND BIMODAL POLYETHYLENES MODEL SYSTEM[D]. 新加坡. 新加坡国立大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11855006-龙传江-化学系.pdf(13362KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[龙传江]的文章
百度学术
百度学术中相似的文章
[龙传江]的文章
必应学术
必应学术中相似的文章
[龙传江]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。