1. Aberle, A. G., Thin-film solar cells. Thin Solid Films 2009, 517 (17), 4706-4710.
2. Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C., Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352 (6283), aad4424.
3. Williams, R., Becquerel Photovoltaic Effect in Binary Compounds. The Journal of Chemical Physics 1960, 32 (5), 1505-1514.
4. Loferski, J. J., Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion. Journal of Applied Physics 1956, 27 (7), 777-784.
5. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25 (5), 676-677.
6. Green, M. A.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. H., Solar cell efficiency tables (version 50). 2017, 25 (7), 668-676.
7. Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; Yamamoto, K., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy 2017, 2 (5), 17032.
8. Knechtli, R. C.; Loo, R. Y.; Kamath, G. S., High-efficiency GaAs solar cells. IEEE Transactions on Electron Devices 1984, 31 (5), 577-588.809. Algora, C.; Ortiz, E.; Rey-Stolle, I.; Diaz, V.; Pena, R.; Andreev, V. M.; Khvostikov, V. P.; Rumyantsev, V. D., A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns. IEEE Transactions on Electron Devices 2001, 48 (5), 840-844.10. Stanley, A. G., Cadmium Sulfide Solar Cells. In Applied Solid State Science, Wolfe, R., Ed. Elsevier: 1975; Vol. 5, pp 251-366.11. Kapadnis, R. S.; Bansode, S. B.; Supekar, A. T.; Bhujbal, P. K.; Kale, S. S.; Jadkar, S. R.; Pathan, H. M., Cadmium Telluride/Cadmium Sulfide Thin Films Solar Cells: A Review. ES Energy & Environment 2020, 10, 3-12.12. Reinhard, P.; Chirilă, A.; Blösch, P.; Pianezzi, F.; Nishiwaki, S.; Buechelers, S.; Tiwari, A. N. In Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 3-8 June 2012; 2012; pp 1-9.13. Mufti, N.; Amrillah, T.; Taufiq, A.; Sunaryono; Aripriharta; Diantoro, M.; Zulhadjri; Nur, H., Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy 2020, 207, 1146-1157.14. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R., 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Prog. Photovolt: Res. Appl. 2008, 16 (3), 235-239.15. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.16. Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4 (2), 145-153.8117. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chemical Reviews 2010, 110 (11), 6595-6663.18. Wöhrle, D.; Meissner, D., Organic Solar Cells. Advanced Materials 1991, 3 (3), 129-138.19. Chamberlain, G. A., Organic solar cells: A review. Solar Cells 1983, 8 (1), 47-83.20. Hillhouse, H. W.; Beard, M. C., Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics. Current Opinion in Colloid & Interface Science 2009, 14 (4), 245-259.21. Kumar, S.; Scholes, G. D., Colloidal nanocrystal solar cells. Microchimica Acta 2008, 160 (3), 315-325.22. NREL Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html.23. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342 (6156), 344-347.24. Park, N.-G., Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. The Journal of Physical Chemistry Letters 2013, 4 (15), 2423-2429.25. Wang, P.; Wu, Y.; Cai, B.; Ma, Q.; Zheng, X.; Zhang, W.-H., Solution-Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials 2019, 29 (47), 1807661.8226. Roth, R. S., Classification of perovskite and other ABO3-type compounds. Journal of Research of the National Bureau of Standards 1957, 58 (2), 75.27. Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8 (7), 506-514.28. Kim, H.-S.; Im, S. H.; Park, N.-G., Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C 2014, 118 (11), 5615-5625.29. Yin, W.-J.; Shi, T.; Yan, Y., Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Advanced Materials 2014, 26 (27), 4653-4658.30. Ali, I. O. A.; Joubert, D. P.; Suleiman, M. S. H., First-Principles Calculations of the Electronic and Optical Properties of CH3NH3PbI3 for Photovoltaic Applications. Materials Today: Proceedings 2018, 5 (4, Part 2), 10570-10576.31. Liu, Y.; Yang, Z.; Cui, D.; Ren, X.; Sun, J.; Liu, X.; Zhang, J.; Wei, Q.; Fan, H.; Yu, F.; Zhang, X.; Zhao, C.; Liu, S., Two-Inch-Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization. Advanced Materials 2015, 27 (35), 5176-5183.32. Babu, R.; Giribabu, L.; Singh, S. P., Recent Advances in Halide-Based Perovskite Crystals and Their Optoelectronic Applications. Crystal Growth & Design 2018, 18 (4), 2645-2664.33. Krishnamoorthy, T.; Kunwu, F.; Boix, P. P.; Li, H.; Koh, T. M.; Leong, W. L.; Powar, S.; Grimsdale, A.; Grätzel, M.; Mathews, N.; Mhaisalkar, S. G., A swivel-cruciform thiophene based hole-transporting83material for efficient perovskite solar cells. Journal of Materials Chemistry A 2014, 2 (18), 6305-6309.34. Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T.; Hayase, S., CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters 2014, 5 (6), 1004-1011.35. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. science 2013, 342 (6156), 341-344.36. Zhao, Y.; Zhu, K., Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH3NH3PbI2Br Nanosheets via Thermal Decomposition. Journal of the American Chemical Society 2014, 136 (35), 12241-12244.37. Kosasih, F. U.; Ducati, C., Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy. Nano Energy 2018, 47, 243-256.38. Bisquert, J.; Juarez-Perez, E. J., The Causes of Degradation of Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2019, 10 (19), 5889-5891.39. Wei, J.; Wang, Q.; Huo, J.; Gao, F.; Gan, Z.; Zhao, Q.; Li, H., Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials 2021, 11 (3), 2002326.40. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast oxygen diffusion and iodide defects mediate84oxygen-induced degradation of perovskite solar cells. Nature Communications 2017, 8 (1), 15218.41. Kye, Y.-H.; Yu, C.-J.; Jong, U.-G.; Chen, Y.; Walsh, A., Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2018, 9 (9), 2196-2201.42. Lee, S.-W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L. E.; Lee, S.; Park, S.; Park, H.; Schubert, M. C.; Glunz, S. W.; Ko, Y.; Jun, Y.; Kang, Y.; Lee, H.-S.; Kim, D., UV Degradation and Recovery of Perovskite Solar Cells. Scientific Reports 2016, 6 (1), 38150.43. Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y.-B., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. Journal of Materials Chemistry A 2015, 3 (15), 8139-8147.44. Niu, G.; Guo, X.; Wang, L., Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (17), 8970-8980.45. Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, H.; Xiong, Z.; Zhang, Y.; Chen, W., Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. Rsc Advances 2017, 7 (57), 35819-35826.46. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2012, 2 (1), 591.8547. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J., Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 2013, 6 (6), 1739-1743.48. Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials 2013, 25 (27), 3727-3732.49. Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. Journal of the American Chemical Society 2012, 134 (42), 17396-17399.50. Liu, D.; Yang, J.; Kelly, T. L., Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency. Journal of the American Chemical Society 2014, 136 (49), 17116-17122.51. Duan, J.; Zhao, Y.; He, B.; Tang, Q., Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr(3) as Light Absorber. Small 2018, 14 (20), e1704443.52. Zuo, C.; Bolink, H. J.; Han, H.; Huang, J.; Cahen, D.; Ding, L., Advances in Perovskite Solar Cells. Advanced Science 2016, 3 (7), 1500324.53. Marinova, N.; Valero, S.; Delgado, J. L., Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science 2017, 488, 373-389.54. Calió, L.; Kazim, S.; Grätzel, M.; Ahmad, S., Hole-Transport Materials for Perovskite Solar Cells. Angewandte Chemie International Edition 2016, 55 (47), 14522-14545.8655. Lian, J.; Lu, B.; Niu, F.; Zeng, P.; Zhan, X., Electron-Transport Materials in Perovskite Solar Cells. Small Methods 2018, 2 (10), 1800082.56. Chueh, C.-C.; Li, C.-Z.; Jen, A. K. Y., Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy & Environmental Science 2015, 8 (4), 1160-1189.57. Kajal, P.; Ghosh, K.; Powar, S., Manufacturing Techniques of Perovskite Solar Cells. In Applications of Solar Energy, Tyagi, H.; Agarwal, A. K.; Chakraborty, P. R.; Powar, S., Eds. Springer Singapore: Singapore, 2018; pp 341-364.58. Jamal, M. S.; Bashar, M. S.; Hasan, A. K. M.; Almutairi, Z. A.; Alharbi, H. F.; Alharthi, N. H.; Karim, M. R.; Misran, H.; Amin, N.; Sopian, K. B.; Akhtaruzzaman, M., Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review. Renewable and Sustainable Energy Reviews 2018, 98, 469-488.59. Chaudhary, S.; Gupta, S. K.; Singh Negi, C. M., Enhanced performance of perovskite photodetectors fabricated by two-step spin coating approach. Materials Science in Semiconductor Processing 2020, 109, 104916.60. Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G., NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials 2014, 26 (3), 1485-1491.61. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.8762. Zhou, Y.; Game, O. S.; Pang, S.; Padture, N. P., Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution from Solutions and Characterization. The Journal of Physical Chemistry Letters 2015, 6 (23), 4827-4839.63. Jung, H. S.; Park, N.-G., Perovskite Solar Cells: From Materials to Devices. Small 2015, 11 (1), 10-25.64. Im, J.-H.; Kim, H.-S.; Park, N.-G., Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials 2014, 2 (8), 081510.65. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science 2014, 7 (8), 2619-2623.66. Chen, S.; Lei, L.; Yang, S.; Liu, Y.; Wang, Z.-S., Characterization of Perovskite Obtained from Two-Step Deposition on Mesoporous Titania. ACS Applied Materials & Interfaces 2015, 7 (46), 25770-25776.67. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.68. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136 (2), 622-625.8869. Hamukwaya, S. L.; Hao, H.; Zhao, Z.; Dong, J.; Zhong, T.; Xing, J.; Hao, L.; Mashingaidze, M. M., A Review of Recent Developments in Preparation Methods for Large-Area Perovskite Solar Cells. Coatings 2022, 12 (2), 252.70. Yang, Z.; Zhang, S.; Li, L.; Chen, W., Research progress on large-area perovskite thin films and solar modules. Journal of Materiomics 2017, 3 (4), 231-244.71. Zhao, Y.; Ma, F.; Gao, F.; Yin, Z.; Zhang, X.; You, J., Research progress in large-area perovskite solar cells. Photon. Res. 2020, 8 (7), A1-A15.72. Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J., Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science 2015, 8 (5), 1544-1550.73. Bi, D.; El-Zohry, A. M.; Hagfeldt, A.; Boschloo, G., Improved Morphology Control Using a Modified Two-Step Method for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (21), 18751-18757.74. Shockley, W.; Queisser, H. J., Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics 1961, 32 (3), 510-519.75. König, D.; Casalenuovo, K.; Takeda, Y.; Conibeer, G.; Guillemoles, J. F.; Patterson, R.; Huang, L. M.; Green, M. A., Hot carrier solar cells: Principles, materials and design. Physica E: Low-dimensional Systems and Nanostructures 2010, 42 (10), 2862-2866.76. Beard, M. C., Multiple Exciton Generation in Semiconductor Quantum Dots. The Journal of Physical Chemistry Letters 2011, 2 (11), 1282-1288.8977. Okada, Y.; Ekins-Daukes, N. J.; Kita, T.; Tamaki, R.; Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C. C.; Farrell, D. J.; Yoshida, K.; Ahsan, N.; Shoji, Y.; Sogabe, T.; Guillemoles, J. F., Intermediate band solar cells: Recent progress and future directions. Applied Physics Reviews 2015, 2 (2), 021302.78. Vos, A. D., Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics 1980, 13 (5), 839-846.79. Wang, R.; Huang, T.; Xue, J.; Tong, J.; Zhu, K.; Yang, Y., Prospects for metal halide perovskite-based tandem solar cells. Nature Photonics 2021, 15 (6), 411-425.80. Geisz, J. F.; France, R. M.; Schulte, K. L.; Steiner, M. A.; Norman, A. G.; Guthrey, H. L.; Young, M. R.; Song, T.; Moriarty, T., Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature Energy 2020, 5 (4), 326-335.81. Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparavičius, E.; Levcenco, S.; Gil-Escrig, L.; Hages, C. J.; Schlatmann, R.; Rech, B.; Malinauskas, T.; Unold, T.; Kaufmann, C. A.; Korte, L.; Niaura, G.; Getautis, V.; Albrecht, S., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy & Environmental Science 2019, 12 (11), 3356-3369.82. Al-Ashouri, A.; Köhnen, E.; Li, B.; Magomedov, A.; Hempel, H.; Caprioglio, P.; Márquez José, A.; Morales Vilches Anna, B.; Kasparavicius, E.; Smith Joel, A.; Phung, N.; Menzel, D.; Grischek, M.; Kegelmann, L.; Skroblin, D.; Gollwitzer, C.; Malinauskas, T.; Jošt, M.; Matič, G.; Rech,90B.; Schlatmann, R.; Topič, M.; Korte, L.; Abate, A.; Stannowski, B.; Neher, D.; Stolterfoht, M.; Unold, T.; Getautis, V.; Albrecht, S., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 2020, 370 (6522), 1300-1309.83. Lin, R.; Xu, J.; Wei, M.; Wang, Y.; Qin, Z.; Liu, Z.; Wu, J.; Xiao, K.; Chen, B.; Park, S. M.; Chen, G.; Atapattu, H. R.; Graham, K. R.; Xu, J.; Zhu, J.; Li, L.; Zhang, C.; Sargent, E. H.; Tan, H., All-perovskite tandem solar cells with improved grain surface passivation. Nature 2022, 603 (7899), 73-78.84. McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Horantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351 (6269), 151-5.85. Zhao, D.; Chen, C.; Wang, C.; Junda, M. M.; Song, Z.; Grice, C. R.; Yu, Y.; Li, C.; Subedi, B.; Podraza, N. J.; Zhao, X.; Fang, G.; Xiong, R.-G.; Zhu, K.; Yan, Y., Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy 2018, 3 (12), 1093-1100.86. Lin, R.; Xiao, K.; Qin, Z.; Han, Q.; Zhang, C.; Wei, M.; Saidaminov, M. I.; Gao, Y.; Xu, J.; Xiao, M.; Li, A.; Zhu, J.; Sargent, E. H.; Tan, H., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy 2019, 4 (10), 864-873.87. Yu, Z.; Yang, Z.; Ni, Z.; Shao, Y.; Chen, B.; Lin, Y.; Wei, H.; Yu, Z. J.; Holman, Z.; Huang, J., Simplified interconnection structure based on91C60/SnO2-x for all-perovskite tandem solar cells. Nature Energy 2020, 5 (9), 657-665.88. Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G., Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells. Journal of the American Chemical Society 2014, 136 (22), 8094-8099.89. Chung, I.; Lee, B.; He, J.; Chang, R. P.; Kanatzidis, M. G., All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485 (7399), 486-9.90. Hao, F.; Stoumpos, C. C.; Chang, R. P.; Kanatzidis, M. G., Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc 2014, 136 (22), 8094-9.91. Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C. R.; Wang, C.; Xiao, Y.; Cimaroli, A. J.; Ellingson, R. J.; Podraza, N. J.; Zhu, K.; Xiong, R. G.; Yan, Y., Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. J Am Chem Soc 2016, 138 (38), 12360-3.92. Chi, D.; Huang, S.; Zhang, M.; Mu, S.; Zhao, Y.; Chen, Y.; You, J., Composition and Interface Engineering for Efficient and Thermally Stable Pb–Sn Mixed Low‐Bandgap Perovskite Solar Cells. Advanced Functional Materials 2018, 28 (51).93. Tong, J.; Song, Z.; Kim, D. H.; Chen, X.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G.; Liu, J.; Zhang, F.; Harvey, S. P.; Li, Z.; Christensen, S. T.; Teeter, G.; Zhao, D.; Al-Jassim, M. M.; van Hest, M.; Beard, M. C.; Shaheen, S. E.; Berry, J. J.;92Yan, Y.; Zhu, K., Carrier lifetimes of >1 mus in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364 (6439), 475-479.94. Kapil, G.; Bessho, T.; Maekawa, T.; Baranwal, A. K.; Zhang, Y.; Kamarudin, M. A.; Hirotani, D.; Shen, Q.; Segawa, H.; Hayase, S., Tin-Lead Perovskite Fabricated via Ethylenediamine Interlayer Guides to the Solar Cell Efficiency of 21.74%. Advanced Energy Materials 2021, 11 (25), 2101069.95. Kapil, G.; Bessho, T.; Sanehira, Y.; Sahamir, S. R.; Chen, M.; Baranwal, A. K.; Liu, D.; Sono, Y.; Hirotani, D.; Nomura, D.; Nishimura, K.; Kamarudin, M. A.; Shen, Q.; Segawa, H.; Hayase, S., Tin–Lead Perovskite Solar Cells Fabricated on Hole Selective Monolayers. ACS Energy Letters 2022, 7 (3), 966-974.96. Cao, J.; Loi, H. L.; Xu, Y.; Guo, X.; Wang, N.; Liu, C. K.; Wang, T.; Cheng, H.; Zhu, Y.; Li, M. G.; Wong, W. Y.; Yan, F., High-Performance Tin-Lead Mixed-Perovskite Solar Cells with Vertical Compositional Gradient. Adv Mater 2022, 34 (6), e2107729.97. Li, B.; Chang, B.; Pan, L.; Li, Z.; Fu, L.; He, Z.; Yin, L., Tin-Based Defects and Passivation Strategies in Tin-Related Perovskite Solar Cells. ACS Energy Letters 2020, 3752-3772.98. Liao, Y.; Jiang, X.; Zhou, W.; Shi, Z.; Li, B.; Mi, Q.; Ning, Z., Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells. Frontiers of Optoelectronics 2017, 10 (2), 103-110.99. Prasanna, R.; Leijtens, T.; Dunfield, S. P.; Raiford, J. A.; Wolf, E. J.; Swifter, S. A.; Werner, J.; Eperon, G. E.; de Paula, C.; Palmstrom, A. F.; Boyd, C. C.; van Hest, M. F. A. M.; Bent, S. F.; Teeter, G.; Berry, J. J.; McGehee, M. D., Design of low bandgap tin–lead halide perovskite solar cells93to achieve thermal, atmospheric and operational stability. Nature Energy 2019, 4 (11), 939-947.100. Kim, H.; Lee, J. W.; Han, G. R.; Kim, Y. J.; Kim, S. H.; Kim, S. K.; Kwak, S. K.; Oh, J. H., Highly Efficient Hole Transport Layer-Free Low Bandgap Mixed Pb–Sn Perovskite Solar Cells Enabled by a Binary Additive System. Advanced Functional Materials 2022, 32 (12), 2110069.101. Zhang, S.; Audebert, P.; Wei, Y.; Al Choueiry, A.; Lanty, G.; Bréhier, A.; Galmiche, L.; Clavier, G.; Boissière, C.; Lauret, J.-S.; Deleporte, E., Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors. Materials 2010, 3 (5), 3385-3406.102. Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P.; Kanatzidis, M. G., Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. J Am Chem Soc 2015, 137 (35), 11445-52.103. Jokar, E.; Chien, C.-H.; Fathi, A.; Rameez, M.; Chang, Y.-H.; Diau, E. W.-G., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy & Environmental Science 2018, 11 (9), 2353-2362.104. Ke, W.; Chen, C.; Spanopoulos, I.; Mao, L.; Hadar, I.; Li, X.; Hoffman, J. M.; Song, Z.; Yan, Y.; Kanatzidis, M. G., Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion-Jacobson Perovskites Boost the Performance of Solar Cells. J Am Chem Soc 2020, 142 (35), 15049-15057.94105. Yang, W. F.; Igbari, F.; Lou, Y. H.; Wang, Z. K.; Liao, L. S., Tin Halide Perovskites: Progress and Challenges. Advanced Energy Materials 2019, 10 (13).106. Lv, S.; Gao, W.; Liu, Y.; Dong, H.; Sun, N.; Niu, T.; Xia, Y.; Wu, Z.; Song, L.; Ran, C.; Fu, L.; Chen, Y., Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells: Progress, challenges, and perspectives. Journal of Energy Chemistry 2022, 65, 371-404.107. Werner, J.; Barraud, L.; Walter, A.; Bräuninger, M.; Sahli, F.; Sacchetto, D.; Tétreault, N.; Paviet-Salomon, B.; Moon, S.-J.; Allebé, C.; Despeisse, M.; Nicolay, S.; De Wolf, S.; Niesen, B.; Ballif, C., Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Letters 2016, 1 (2), 474-480.108. Rohatgi, A.; Zhu, K.; Tong, J.; Kim, D. H.; Reichmanis, E.; Rounsaville, B.; Prakash, V.; Ok, Y.-W., 26.7% Efficient 4-Terminal Perovskite–Silicon Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/SiOx Passivating Contact Silicon Cell. IEEE Journal of Photovoltaics 2020, 10 (2), 417-422.109. Shen, H.; Walter, D.; Wu, Y.; Fong, K. C.; Jacobs, D. A.; Duong, T.; Peng, J.; Weber, K.; White, T. P.; Catchpole, K. R., Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Advanced Energy Materials 2020, 10 (13), 1902840.110. Han, Q.; Hsieh, Y. T.; Meng, L.; Wu, J. L.; Sun, P.; Yao, E. P.; Chang, S. Y.; Bae, S. H.; Kato, T.; Bermudez, V.; Yang, Y., High-95performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science 2018, 361 (6405), 904-908.111. Zhao, P.; Feng, L.; Lin, Z.; Wang, J.; Su, J.; Hu, Z.; Zhang, J.; Ouyang, X.; Chang, J.; Hao, Y., Theoretical Analysis of Two‐Terminal and Four‐Terminal Perovskite/Copper Indium Gallium Selenide Tandem Solar Cells. Solar RRL 2019, 3 (11), 1900303.112. Todorov, T.; Gershon, T.; Gunawan, O.; Lee, Y. S.; Sturdevant, C.; Chang, L.-Y.; Guha, S., Monolithic Perovskite-CIGS Tandem Solar Cells via In Situ Band Gap Engineering. Advanced Energy Materials 2015, 5 (23), 1500799.113. Hörantner, M. T.; Leijtens, T.; Ziffer, M. E.; Eperon, G. E.; Christoforo, M. G.; McGehee, M. D.; Snaith, H. J., The Potential of Multijunction Perovskite Solar Cells. ACS Energy Letters 2017, 2 (10), 2506-2513.114. Jošt, M.; Kegelmann, L.; Korte, L.; Albrecht, S., Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Advanced Energy Materials 2020, 10 (26).115. Giles E. Eperon; Tomas Leijtens; Kevin A. Bush; Rohit Prasanna; Thomas Green; Jacob Tse-Wei Wang; David P. McMeekin; George Volonakis; Rebecca L. Milot; Richard May; Axel Palmstrom; Daniel J. Slotcavage; Rebecca A. Belisle; Jay B. Patel; Elizabeth S. Parrott; Rebecca J. Sutton; Wen Ma; Farhad Moghadam; Bert Conings; Aslihan Babayigit; Hans-Gerd Boyen; Stacey Bent; Feliciano Giustino; Laura M. Herz; Michael B. Johnston; Michael D. McGehee; Snaith, H. J., Perovskite-96perovskite tandem photovoltaics with optimized bandgaps. Science 2016, 861-865.116. Prasanna, R.; Gold-Parker, A.; Leijtens, T.; Conings, B.; Babayigit, A.; Boyen, H. G.; Toney, M. F.; McGehee, M. D., Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. J Am Chem Soc 2017, 139 (32), 11117-11124.117. Tomas Leijtens; Rohit Prasanna; Kevin A. Bush; Giles E. Eperon; James A. Raiford; Aryeh Gold-Parker; Eli J. Wolf; Simon A. Swifter; Caleb C. Boyd; Hsin-Ping Wang; Michael F. Toney; Stacey F. Bente; McGehee, M. D., Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustainable Energy Fuels 2018, 2, 2450–2459.118. Huang, Y.; Liu, T.; Li, D.; Zhao, D.; Amini, A.; Cheng, C.; Xing, G., Limitations and solutions for achieving high-performance perovskite tandem photovoltaics. Nano Energy 2021, 88.119. Yuan, Y.; Huang, J.; Li, G., Intermediate Layers in Tandem Organic Solar Cells. Green 2011, 1 (1).120. Huang, Y.; Liu, T.; Liang, C.; Xia, J.; Li, D.; Zhang, H.; Amini, A.; Xing, G.; Cheng, C., Towards Simplifying the Device Structure of High‐Performance Perovskite Solar Cells. Advanced Functional Materials 2020, 30 (28).121. Wang, Y.; Yue, Y.; Yang, X.; Han, L., Toward Long-Term Stable and Highly Efficient Perovskite Solar Cells via Effective Charge Transporting Materials. Advanced Energy Materials 2018, 8 (22).97122. Stolterfoht, M.; Wolff, C. M.; Márquez, J. A.; Zhang, S.; Hages, C. J.; Rothhardt, D.; Albrecht, S.; Burn, P. L.; Meredith, P.; Unold, T.; Neher, D., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nature Energy 2018, 3 (10), 847-854.123. Liu, X.; Yu, Z.; Wang, T.; Chiu, K. L.; Lin, F.; Gong, H.; Ding, L.; Cheng, Y., Full Defects Passivation Enables 21% Efficiency Perovskite Solar Cells Operating in Air. Advanced Energy Materials 2020, 10 (38).124. Wolff, C. M.; Caprioglio, P.; Stolterfoht, M.; Neher, D., Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Adv. Mater. 2019, e1902762.125. Song, T. B.; Yokoyama, T.; Stoumpos, C. C.; Logsdon, J.; Cao, D. H.; Wasielewski, M. R.; Aramaki, S.; Kanatzidis, M. G., Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. J Am Chem Soc 2017, 139 (2), 836-842.126. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex. Journal of the American Chemical Society 2016, 138 (12), 3974-3977.127. Zhou, X.; Zhang, L.; Wang, X.; Liu, C.; Chen, S.; Zhang, M.; Li, X.; Yi, W.; Xu, B., Highly Efficient and Stable GABr-Modified Ideal-Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small Voc Deficit of 0.33 V. Adv Mater 2020, 32 (14), e1908107.98128. Wang, C.; Zhang, Y.; Gu, F.; Zhao, Z.; Li, H.; Jiang, H.; Bian, Z.; Liu, Z., Illumination Durability and High-Efficiency Sn-Based Perovskite Solar Cell under Coordinated Control of Phenylhydrazine and Halogen Ions. Matter 2020.129. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8 (6), 489-494.130. Ke, W.; Xiao, C.; Wang, C.; Saparov, B.; Duan, H. S.; Zhao, D.; Xiao, Z.; Schulz, P.; Harvey, S. P.; Liao, W.; Meng, W.; Yu, Y.; Cimaroli, A. J.; Jiang, C. S.; Zhu, K.; Al-Jassim, M.; Fang, G.; Mitzi, D. B.; Yan, Y., Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells. Adv Mater 2016, 28 (26), 5214-21.131. Tong, J.; Song, Z.; Kim, D. H.; Chen, X.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G.; Liu, J.; Zhang, F.; Harvey, S. P.; Li, Z.; Christensen, S. T.; Teeter, G.; Zhao, D.; Al-Jassim, M. M.; van Hest, M. F. A. M.; Beard, M. C.; Shaheen, S. E.; Berry, J. J.; Yan, Y.; Zhu, K., Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364 (6439), 475-479.132. Alharbi, E. A.; Alyamani, A. Y.; Kubicki, D. J.; Uhl, A. R.; Walder, B. J.; Alanazi, A. Q.; Luo, J.; Burgos-Caminal, A.; Albadri, A.; Albrithen, H.; Alotaibi, M. H.; Moser, J. E.; Zakeeruddin, S. M.; Giordano, F.; Emsley, L.; Gratzel, M., Atomic-level passivation mechanism99of ammonium salts enabling highly efficient perovskite solar cells. Nat Commun 2019, 10 (1), 3008.133. Nakanishi, E.; Nishikubo, R.; Wakamiya, A.; Saeki, A., How the Mixed Cations (Guanidium, Formamidinium, and Phenylethylamine) in Tin Iodide Perovskites Affect Their Charge Carrier Dynamics and Solar Cell Characteristics. J Phys Chem Lett 2020, 11 (10), 4043-4051.134. Li, F.; Xie, Y.; Hu, Y.; Long, M.; Zhang, Y.; Xu, J.; Qin, M.; Lu, X.; Liu, M., Effects of Alkyl Chain Length on Crystal Growth and Oxidation Process of Two-Dimensional Tin Halide Perovskites. ACS Energy Letters 2020, 5 (5), 1422-1429.135. Wang, F.; Yu, H.; Xu, H.; Zhao, N., HPbI3: A New Precursor Compound for Highly Efficient Solution-Processed Perovskite Solar Cells. Advanced Functional Materials 2015, 25 (7), 1120-1126.136. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014, 7 (3), 982-988.137. Wang, K.; Jin, Z.; Liang, L.; Bian, H.; Bai, D.; Wang, H.; Zhang, J.; Wang, Q.; Liu, S., All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15. Nat Commun 2018, 9 (1), 4544.138. Ke, W.; Spanopoulos, I.; Stoumpos, C. C.; Kanatzidis, M. G., Myths and reality of HPbI3 in halide perovskite solar cells. Nat Commun 2018, 9 (1), 4785.139. Chen, Q.; Wu, J.; Matondo, J. T.; Bai, L.; Maurice, D. M.; Guli, M., Optimization of Bulk Defects in Sn/Pb Mixed Perovskite Solar Cells100Through Synergistic Effect of Potassium Thiocyanate. Solar RRL 2020, 4 (12), 2000584.140. Haque, F.; Wright, M.; Mahmud, M. A.; Yi, H.; Wang, D.; Duan, L.; Xu, C.; Upama, M. B.; Uddin, A., Effects of Hydroiodic Acid Concentration on the Properties of CsPbI3 Perovskite Solar Cells. ACS Omega 2018, 3 (9), 11937-11944.141. Carbone, A.; Kotowska, B. K.; Kotowski, D., Space-charge-limited current fluctuations in organic semiconductors. Phys Rev Lett 2005, 95 (23), 236601.142. Li, D.; Kong, W.; Zhang, H.; Wang, D.; Li, W.; Liu, C.; Chen, H.; Song, W.; Gao, F.; Amini, A.; Xu, B.; Li, S.; Cheng, C., Bifunctional Ultrathin PCBM Enables Passivated Trap States and Cascaded Energy Level toward Efficient Inverted Perovskite Solar Cells. ACS Appl Mater Interfaces 2020, 12 (17), 20103-20109.143. Liu, X.; Cheng, Y.; Liu, C.; Zhang, T.; Zhang, N.; Zhang, S.; Chen, J.; Xu, Q.; Ouyang, J.; Gong, H., 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy & Environmental Science 2019, 12 (5), 1622-1633.144. Mandoc, M. M.; Kooistra, F. B.; Hummelen, J. C.; de Boer, B.; Blom, P. W. M., Effect of traps on the performance of bulk heterojunction organic solar cells. Applied Physics Letters 2007, 91 (26).145. Wetzelaer, G. J.; Scheepers, M.; Sempere, A. M.; Momblona, C.; Avila, J.; Bolink, H. J., Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv Mater 2015, 27 (11), 1837-41.101146. Wu, S.; Zhang, J.; Li, Z.; Liu, D.; Qin, M.; Cheung, S. H.; Lu, X.; Lei, D.; So, S. K.; Zhu, Z.; Jen, A. K. Y., Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells. Joule 2020, 4 (6), 1248-1262.147. Maiberg, M.; Hölscher, T.; Zahedi-Azad, S.; Scheer, R., Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the band gap. Journal of Applied Physics 2015, 118 (10).148. Maiberg, M.; Scheer, R., Theoretical study of time-resolved luminescence in semiconductors. II. Pulsed excitation. Journal of Applied Physics 2014, 116 (12), 123711.149. Wu, B.; Nguyen, H. T.; Ku, Z.; Han, G.; Giovanni, D.; Mathews, N.; Fan, H. J.; Sum, T. C., Discerning the Surface and Bulk Recombination Kinetics of Organic-Inorganic Halide Perovskite Single Crystals. Advanced Energy Materials 2016, 6 (14).150. Choi, W.-G.; Park, C.-G.; Kim, Y.; Moon, T., Sn Perovskite Solar Cells via 2D/3D Bilayer Formation through a Sequential Vapor Process. ACS Energy Letters 2020, 5 (11), 3461-3467.151. Li, M.; Zuo, W.-W.; Yang, Y.-G.; Aldamasy, M. H.; Wang, Q.; Cruz, S. H. T.; Feng, S.-L.; Saliba, M.; Wang, Z.-K.; Abate, A., Tin Halide Perovskite Films Made of Highly Oriented 2D Crystals Enable More Efficient and Stable Lead-free Perovskite Solar Cells. ACS Energy Letters 2020, 5 (6), 1923-1929.152. Chen, Z.; Wang, J. J.; Ren, Y.; Yu, C.; Shum, K., Schottky solar cells based on CsSnI3 thin-films. Applied Physics Letters 2012, 101 (9).102153. Marshall, K. P.; Walker, M.; Walton, R. I.; Hatton, R. A., Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy 2016, 1 (12).154. Tsai, C.-M.; Lin, Y.-P.; Pola, M. K.; Narra, S.; Jokar, E.; Yang, Y.-W.; Diau, E. W.-G., Control of Crystal Structures and Optical Properties with Hybrid Formamidinium and 2-Hydroxyethylammonium Cations for Mesoscopic Carbon-Electrode Tin-Based Perovskite Solar Cells. ACS Energy Letters 2018, 3 (9), 2077-2085.155. Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J.-P.; Bulović, V.; Shin, S. S.; Bawendi, M. G.; Seo, J., Efficient perovskite solar cells via improved carrier management. Nature 2021, 590 (7847), 587-593.156. Kim, M.; Jeong, J.; Lu, H.; Lee, T. K.; Eickemeyer, F. T.; Liu, Y.; Choi, I. W.; Choi, S. J.; Jo, Y.; Kim, H. B.; Mo, S. I.; Kim, Y. K.; Lee, H.; An, N. G.; Cho, S.; Tress, W. R.; Zakeeruddin, S. M.; Hagfeldt, A.; Kim, J. Y.; Gratzel, M.; Kim, D. S., Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 2022, 375 (6578), 302-306.157. Shen, Z.; Han, Q.; Luo, X.; Shen, Y.; Wang, T.; Zhang, C.; Wang, Y.; Chen, H.; Yang, X.; Zhang, Y.; Han, L., Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells. Energy & Environmental Science 2022, 15 (3), 1078-1085.158. Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G.; Shin, T. J.; Il Seok, S.,103Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598 (7881), 444-450.159. Cao, J.; Loi, H.-L.; Xu, Y.; Guo, X.; Wang, N.; Liu, C.-k.; Wang, T.; Cheng, H.; Zhu, Y.; Li, M. G.; Wong, W.-Y.; Yan, F., High-Performance Tin–Lead Mixed-Perovskite Solar Cells with Vertical Compositional Gradient. 2022, 34 (6), 2107729.160. Palmstrom, A. F.; Eperon, G. E.; Leijtens, T.; Prasanna, R.; Habisreutinger, S. N.; Nemeth, W.; Gaulding, E. A.; Dunfield, S. P.; Reese, M.; Nanayakkara, S.; Moot, T.; Werner, J.; Liu, J.; To, B.; Christensen, S. T.; McGehee, M. D.; van Hest, M. F. A. M.; Luther, J. M.; Berry, J. J.; Moore, D. T., Enabling Flexible All-Perovskite Tandem Solar Cells. Joule 2019, 3 (9), 2193-2204.161. Xiao, K.; Lin, R.; Han, Q.; Hou, Y.; Qin, Z.; Nguyen, H. T.; Wen, J.; Wei, M.; Yeddu, V.; Saidaminov, M. I.; Gao, Y.; Luo, X.; Wang, Y.; Gao, H.; Zhang, C.; Xu, J.; Zhu, J.; Sargent, E. H.; Tan, H., All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy 2020, 5 (11), 870-880.162. Zhou, Z.; Pang, S., Highly efficient inverted hole-transport-layer-free perovskite solar cells. Journal of Materials Chemistry A 2020, 8 (2), 503-512.163. Han, Q.; Wei, Y.; Lin, R.; Fang, Z.; Xiao, K.; Luo, X.; Gu, S.; Zhu, J.; Ding, L.; Tan, H., Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Science Bulletin 2019, 64 (19), 1399-1401.104164. Cameron, J.; Skabara, P. J., The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Materials Horizons 2020, 7 (7), 1759-1772.165. Wei, Q.; Ke, Y.; Ning, Z., Theoretical Study of Using Kinetics Strategy to Enhance the Stability of Tin Perovskite. Energy & Environmental Materials 2020, 3 (4), 541-547.166. Ricciarelli, D.; Meggiolaro, D.; Ambrosio, F.; De Angelis, F., Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation. ACS Energy Letters 2020, 5 (9), 2787-2795.167. Lim, E. L.; Hagfeldt, A.; Bi, D., Toward highly efficient and stable Sn2+ and mixed Pb2+/Sn2+ based halide perovskite solar cells through device engineering. Energy & Environmental Science 2021, 14 (6), 3256-3300.168. Cao, J.; Yan, F., Recent progress in tin-based perovskite solar cells. Energy & Environmental Science 2021, 14 (3), 1286-1325.169. Jiang, X.; Zang, Z.; Zhou, Y.; Li, H.; Wei, Q.; Ning, Z., Tin Halide Perovskite Solar Cells: An Emerging Thin-Film Photovoltaic Technology. Accounts of Materials Research 2021, 2 (4), 210-219.170. Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J Am Chem Soc 2015, 137 (27), 8696-9.171. Keawprajak, A.; Koetniyom, W.; Piyakulawat, P.; Jiramitmongkon, K.; Pratontep, S.; Asawapirom, U., Effects of tetramethylene sulfone solvent additives on conductivity of PEDOT:PSS film and performance of polymer photovoltaic cells. Organic Electronics 2013, 14 (1), 402-410.105172. Ivor Wharf, T. G., Ramesh Makhija, Mario Onyszchuk, Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands. Canadian Journal of Chemistry 1976, 54 (21).173. Song, C.; Li, X.; Wang, Y.; Fu, S.; Wan, L.; Liu, S.; Zhang, W.; Song, W.; Fang, J., Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A 2019, 7 (34), 19881-19888.174. Ren, Y.; Ding, X.; Zhu, J.; Hayat, T.; Alsaedi, A.; Li, Z.; Xu, X.; Ding, Y.; Yang, S.; Kong, M.; Dai, S., A Bi-functional additive for linking PI 2 and decreasing defects in organo-halide perovskites. Journal of Alloys and Compounds 2018, 758, 171-176.175. Baranwal, A. K.; Saini, S.; Wang, Z.; Hamada, K.; Hirotani, D.; Nishimura, K.; Kamarudin, M. A.; Kapil, G.; Yabuki, T.; Iikubo, S.; Shen, Q.; Miyazaki, K.; Hayase, S., Effect of Precursor Solution Aging on the Thermoelectric Performance of CsSnI3 Thin Film. Journal of Electronic Materials 2019, 49 (5), 2698-2703.176. Park, C.; Choi, J.; Min, J.; Cho, K., Suppression of Oxidative Degradation of Tin–Lead Hybrid Organometal Halide Perovskite Solar Cells by Ag Doping. ACS Energy Letters 2020, 5 (10), 3285-3294.177. Bin, Z.; Li, J.; Wang, L.; Duan, L., Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy & Environmental Science 2016, 9 (11), 3424-3428.178. Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z.; Liu, T.; Chen, K.; Ye, F.; Wu, P.; Zhao, L.; Wu, J.; Tu, Y.; Zhang, Y.; Yang, X.; Zhang,106W.; Friend, R. H.; Gong, Q.; Snaith, H. J.; Zhu, R., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360 (6396), 1442-1446.179. Liu, Z.; Hu, J.; Jiao, H.; Li, L.; Zheng, G.; Chen, Y.; Huang, Y.; Zhang, Q.; Shen, C.; Chen, Q.; Zhou, H., Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Adv Mater 2017, 29 (23).180. Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M., Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Applied Physics Letters 2005, 86 (12).181. Glowienka, D.; Galagan, Y., Light Intensity Analysis of Photovoltaic Parameters for Perovskite Solar Cells. Adv Mater 2022, 34 (2), e2105920.
修改评论