中文版 | English
题名

Composition and Interface Engineering Towards Efficient Lead-Lean Perovskite Solar Cells

姓名
姓名拼音
HU Hang
学号
11855015
学位类型
博士
学位专业
材料科学与工程
导师
徐保民
导师单位
材料科学与工程系
外机构导师
Ouyang Jianyong
外机构导师单位
新加坡国立大学
论文答辩日期
2022-08
论文提交日期
2023-03-01
学位授予单位
新加坡国立大学
学位授予地点
新加坡
摘要

Recently, perovskite solar cells (PSCs) have been the most promising photovoltaic solar cell which could efficiently convert renewable sunlight into electricity. Although the record power conversion efficiency of PSCs has achieved 25.7%, the stability and lead toxicity issues also restrict the development of PSCs. In order to decrease the environmental pollution, tin-lead (Sn-Pb) mixed PSCs have been introduced. The ideal bandgap of Sn-Pb mixed PSCs also makes it possible to realize higher efficiency. To prepare high-performance hole transport layer-free Sn-Pb mixed PSCs, hydroiodic acid (HI) and thiocyanate guanidinium (GASCN) were firstly introduced into perovskite solution to regulate perovskite crystallization process to obtain compact and uniform perovskite films. Then 4,4'-sulfonyldiphenol (DSP) was employed to passivate surface trap states on Sn-Pb mixed perovskite films to effectively enhance device performance. Furthermore, the simplified device structure also offers great application potential in all-perovskite tandem solar cells.

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2023-03
参考文献列表

1. Aberle, A. G., Thin-film solar cells. Thin Solid Films 2009, 517 (17), 4706-4710.
2. Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C., Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352 (6283), aad4424.
3. Williams, R., Becquerel Photovoltaic Effect in Binary Compounds. The Journal of Chemical Physics 1960, 32 (5), 1505-1514.
4. Loferski, J. J., Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion. Journal of Applied Physics 1956, 27 (7), 777-784.
5. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25 (5), 676-677.
6. Green, M. A.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. H., Solar cell efficiency tables (version 50). 2017, 25 (7), 668-676.
7. Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; Yamamoto, K., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy 2017, 2 (5), 17032.
8. Knechtli, R. C.; Loo, R. Y.; Kamath, G. S., High-efficiency GaAs solar cells. IEEE Transactions on Electron Devices 1984, 31 (5), 577-588.809. Algora, C.; Ortiz, E.; Rey-Stolle, I.; Diaz, V.; Pena, R.; Andreev, V. M.; Khvostikov, V. P.; Rumyantsev, V. D., A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns. IEEE Transactions on Electron Devices 2001, 48 (5), 840-844.10. Stanley, A. G., Cadmium Sulfide Solar Cells. In Applied Solid State Science, Wolfe, R., Ed. Elsevier: 1975; Vol. 5, pp 251-366.11. Kapadnis, R. S.; Bansode, S. B.; Supekar, A. T.; Bhujbal, P. K.; Kale, S. S.; Jadkar, S. R.; Pathan, H. M., Cadmium Telluride/Cadmium Sulfide Thin Films Solar Cells: A Review. ES Energy & Environment 2020, 10, 3-12.12. Reinhard, P.; Chirilă, A.; Blösch, P.; Pianezzi, F.; Nishiwaki, S.; Buechelers, S.; Tiwari, A. N. In Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 3-8 June 2012; 2012; pp 1-9.13. Mufti, N.; Amrillah, T.; Taufiq, A.; Sunaryono; Aripriharta; Diantoro, M.; Zulhadjri; Nur, H., Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy 2020, 207, 1146-1157.14. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R., 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Prog. Photovolt: Res. Appl. 2008, 16 (3), 235-239.15. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.16. Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4 (2), 145-153.8117. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chemical Reviews 2010, 110 (11), 6595-6663.18. Wöhrle, D.; Meissner, D., Organic Solar Cells. Advanced Materials 1991, 3 (3), 129-138.19. Chamberlain, G. A., Organic solar cells: A review. Solar Cells 1983, 8 (1), 47-83.20. Hillhouse, H. W.; Beard, M. C., Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics. Current Opinion in Colloid & Interface Science 2009, 14 (4), 245-259.21. Kumar, S.; Scholes, G. D., Colloidal nanocrystal solar cells. Microchimica Acta 2008, 160 (3), 315-325.22. NREL Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html.23. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342 (6156), 344-347.24. Park, N.-G., Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. The Journal of Physical Chemistry Letters 2013, 4 (15), 2423-2429.25. Wang, P.; Wu, Y.; Cai, B.; Ma, Q.; Zheng, X.; Zhang, W.-H., Solution-Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials 2019, 29 (47), 1807661.8226. Roth, R. S., Classification of perovskite and other ABO3-type compounds. Journal of Research of the National Bureau of Standards 1957, 58 (2), 75.27. Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8 (7), 506-514.28. Kim, H.-S.; Im, S. H.; Park, N.-G., Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C 2014, 118 (11), 5615-5625.29. Yin, W.-J.; Shi, T.; Yan, Y., Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Advanced Materials 2014, 26 (27), 4653-4658.30. Ali, I. O. A.; Joubert, D. P.; Suleiman, M. S. H., First-Principles Calculations of the Electronic and Optical Properties of CH3NH3PbI3 for Photovoltaic Applications. Materials Today: Proceedings 2018, 5 (4, Part 2), 10570-10576.31. Liu, Y.; Yang, Z.; Cui, D.; Ren, X.; Sun, J.; Liu, X.; Zhang, J.; Wei, Q.; Fan, H.; Yu, F.; Zhang, X.; Zhao, C.; Liu, S., Two-Inch-Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization. Advanced Materials 2015, 27 (35), 5176-5183.32. Babu, R.; Giribabu, L.; Singh, S. P., Recent Advances in Halide-Based Perovskite Crystals and Their Optoelectronic Applications. Crystal Growth & Design 2018, 18 (4), 2645-2664.33. Krishnamoorthy, T.; Kunwu, F.; Boix, P. P.; Li, H.; Koh, T. M.; Leong, W. L.; Powar, S.; Grimsdale, A.; Grätzel, M.; Mathews, N.; Mhaisalkar, S. G., A swivel-cruciform thiophene based hole-transporting83material for efficient perovskite solar cells. Journal of Materials Chemistry A 2014, 2 (18), 6305-6309.34. Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T.; Hayase, S., CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters 2014, 5 (6), 1004-1011.35. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. science 2013, 342 (6156), 341-344.36. Zhao, Y.; Zhu, K., Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH3NH3PbI2Br Nanosheets via Thermal Decomposition. Journal of the American Chemical Society 2014, 136 (35), 12241-12244.37. Kosasih, F. U.; Ducati, C., Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy. Nano Energy 2018, 47, 243-256.38. Bisquert, J.; Juarez-Perez, E. J., The Causes of Degradation of Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2019, 10 (19), 5889-5891.39. Wei, J.; Wang, Q.; Huo, J.; Gao, F.; Gan, Z.; Zhao, Q.; Li, H., Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials 2021, 11 (3), 2002326.40. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast oxygen diffusion and iodide defects mediate84oxygen-induced degradation of perovskite solar cells. Nature Communications 2017, 8 (1), 15218.41. Kye, Y.-H.; Yu, C.-J.; Jong, U.-G.; Chen, Y.; Walsh, A., Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2018, 9 (9), 2196-2201.42. Lee, S.-W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L. E.; Lee, S.; Park, S.; Park, H.; Schubert, M. C.; Glunz, S. W.; Ko, Y.; Jun, Y.; Kang, Y.; Lee, H.-S.; Kim, D., UV Degradation and Recovery of Perovskite Solar Cells. Scientific Reports 2016, 6 (1), 38150.43. Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y.-B., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. Journal of Materials Chemistry A 2015, 3 (15), 8139-8147.44. Niu, G.; Guo, X.; Wang, L., Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (17), 8970-8980.45. Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, H.; Xiong, Z.; Zhang, Y.; Chen, W., Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. Rsc Advances 2017, 7 (57), 35819-35826.46. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2012, 2 (1), 591.8547. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J., Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 2013, 6 (6), 1739-1743.48. Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials 2013, 25 (27), 3727-3732.49. Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. Journal of the American Chemical Society 2012, 134 (42), 17396-17399.50. Liu, D.; Yang, J.; Kelly, T. L., Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency. Journal of the American Chemical Society 2014, 136 (49), 17116-17122.51. Duan, J.; Zhao, Y.; He, B.; Tang, Q., Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr(3) as Light Absorber. Small 2018, 14 (20), e1704443.52. Zuo, C.; Bolink, H. J.; Han, H.; Huang, J.; Cahen, D.; Ding, L., Advances in Perovskite Solar Cells. Advanced Science 2016, 3 (7), 1500324.53. Marinova, N.; Valero, S.; Delgado, J. L., Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science 2017, 488, 373-389.54. Calió, L.; Kazim, S.; Grätzel, M.; Ahmad, S., Hole-Transport Materials for Perovskite Solar Cells. Angewandte Chemie International Edition 2016, 55 (47), 14522-14545.8655. Lian, J.; Lu, B.; Niu, F.; Zeng, P.; Zhan, X., Electron-Transport Materials in Perovskite Solar Cells. Small Methods 2018, 2 (10), 1800082.56. Chueh, C.-C.; Li, C.-Z.; Jen, A. K. Y., Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy & Environmental Science 2015, 8 (4), 1160-1189.57. Kajal, P.; Ghosh, K.; Powar, S., Manufacturing Techniques of Perovskite Solar Cells. In Applications of Solar Energy, Tyagi, H.; Agarwal, A. K.; Chakraborty, P. R.; Powar, S., Eds. Springer Singapore: Singapore, 2018; pp 341-364.58. Jamal, M. S.; Bashar, M. S.; Hasan, A. K. M.; Almutairi, Z. A.; Alharbi, H. F.; Alharthi, N. H.; Karim, M. R.; Misran, H.; Amin, N.; Sopian, K. B.; Akhtaruzzaman, M., Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review. Renewable and Sustainable Energy Reviews 2018, 98, 469-488.59. Chaudhary, S.; Gupta, S. K.; Singh Negi, C. M., Enhanced performance of perovskite photodetectors fabricated by two-step spin coating approach. Materials Science in Semiconductor Processing 2020, 109, 104916.60. Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G., NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials 2014, 26 (3), 1485-1491.61. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.8762. Zhou, Y.; Game, O. S.; Pang, S.; Padture, N. P., Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution from Solutions and Characterization. The Journal of Physical Chemistry Letters 2015, 6 (23), 4827-4839.63. Jung, H. S.; Park, N.-G., Perovskite Solar Cells: From Materials to Devices. Small 2015, 11 (1), 10-25.64. Im, J.-H.; Kim, H.-S.; Park, N.-G., Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials 2014, 2 (8), 081510.65. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science 2014, 7 (8), 2619-2623.66. Chen, S.; Lei, L.; Yang, S.; Liu, Y.; Wang, Z.-S., Characterization of Perovskite Obtained from Two-Step Deposition on Mesoporous Titania. ACS Applied Materials & Interfaces 2015, 7 (46), 25770-25776.67. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.68. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136 (2), 622-625.8869. Hamukwaya, S. L.; Hao, H.; Zhao, Z.; Dong, J.; Zhong, T.; Xing, J.; Hao, L.; Mashingaidze, M. M., A Review of Recent Developments in Preparation Methods for Large-Area Perovskite Solar Cells. Coatings 2022, 12 (2), 252.70. Yang, Z.; Zhang, S.; Li, L.; Chen, W., Research progress on large-area perovskite thin films and solar modules. Journal of Materiomics 2017, 3 (4), 231-244.71. Zhao, Y.; Ma, F.; Gao, F.; Yin, Z.; Zhang, X.; You, J., Research progress in large-area perovskite solar cells. Photon. Res. 2020, 8 (7), A1-A15.72. Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J., Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science 2015, 8 (5), 1544-1550.73. Bi, D.; El-Zohry, A. M.; Hagfeldt, A.; Boschloo, G., Improved Morphology Control Using a Modified Two-Step Method for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (21), 18751-18757.74. Shockley, W.; Queisser, H. J., Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics 1961, 32 (3), 510-519.75. König, D.; Casalenuovo, K.; Takeda, Y.; Conibeer, G.; Guillemoles, J. F.; Patterson, R.; Huang, L. M.; Green, M. A., Hot carrier solar cells: Principles, materials and design. Physica E: Low-dimensional Systems and Nanostructures 2010, 42 (10), 2862-2866.76. Beard, M. C., Multiple Exciton Generation in Semiconductor Quantum Dots. The Journal of Physical Chemistry Letters 2011, 2 (11), 1282-1288.8977. Okada, Y.; Ekins-Daukes, N. J.; Kita, T.; Tamaki, R.; Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C. C.; Farrell, D. J.; Yoshida, K.; Ahsan, N.; Shoji, Y.; Sogabe, T.; Guillemoles, J. F., Intermediate band solar cells: Recent progress and future directions. Applied Physics Reviews 2015, 2 (2), 021302.78. Vos, A. D., Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics 1980, 13 (5), 839-846.79. Wang, R.; Huang, T.; Xue, J.; Tong, J.; Zhu, K.; Yang, Y., Prospects for metal halide perovskite-based tandem solar cells. Nature Photonics 2021, 15 (6), 411-425.80. Geisz, J. F.; France, R. M.; Schulte, K. L.; Steiner, M. A.; Norman, A. G.; Guthrey, H. L.; Young, M. R.; Song, T.; Moriarty, T., Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature Energy 2020, 5 (4), 326-335.81. Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparavičius, E.; Levcenco, S.; Gil-Escrig, L.; Hages, C. J.; Schlatmann, R.; Rech, B.; Malinauskas, T.; Unold, T.; Kaufmann, C. A.; Korte, L.; Niaura, G.; Getautis, V.; Albrecht, S., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy & Environmental Science 2019, 12 (11), 3356-3369.82. Al-Ashouri, A.; Köhnen, E.; Li, B.; Magomedov, A.; Hempel, H.; Caprioglio, P.; Márquez José, A.; Morales Vilches Anna, B.; Kasparavicius, E.; Smith Joel, A.; Phung, N.; Menzel, D.; Grischek, M.; Kegelmann, L.; Skroblin, D.; Gollwitzer, C.; Malinauskas, T.; Jošt, M.; Matič, G.; Rech,90B.; Schlatmann, R.; Topič, M.; Korte, L.; Abate, A.; Stannowski, B.; Neher, D.; Stolterfoht, M.; Unold, T.; Getautis, V.; Albrecht, S., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 2020, 370 (6522), 1300-1309.83. Lin, R.; Xu, J.; Wei, M.; Wang, Y.; Qin, Z.; Liu, Z.; Wu, J.; Xiao, K.; Chen, B.; Park, S. M.; Chen, G.; Atapattu, H. R.; Graham, K. R.; Xu, J.; Zhu, J.; Li, L.; Zhang, C.; Sargent, E. H.; Tan, H., All-perovskite tandem solar cells with improved grain surface passivation. Nature 2022, 603 (7899), 73-78.84. McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Horantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351 (6269), 151-5.85. Zhao, D.; Chen, C.; Wang, C.; Junda, M. M.; Song, Z.; Grice, C. R.; Yu, Y.; Li, C.; Subedi, B.; Podraza, N. J.; Zhao, X.; Fang, G.; Xiong, R.-G.; Zhu, K.; Yan, Y., Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy 2018, 3 (12), 1093-1100.86. Lin, R.; Xiao, K.; Qin, Z.; Han, Q.; Zhang, C.; Wei, M.; Saidaminov, M. I.; Gao, Y.; Xu, J.; Xiao, M.; Li, A.; Zhu, J.; Sargent, E. H.; Tan, H., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy 2019, 4 (10), 864-873.87. Yu, Z.; Yang, Z.; Ni, Z.; Shao, Y.; Chen, B.; Lin, Y.; Wei, H.; Yu, Z. J.; Holman, Z.; Huang, J., Simplified interconnection structure based on91C60/SnO2-x for all-perovskite tandem solar cells. Nature Energy 2020, 5 (9), 657-665.88. Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G., Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells. Journal of the American Chemical Society 2014, 136 (22), 8094-8099.89. Chung, I.; Lee, B.; He, J.; Chang, R. P.; Kanatzidis, M. G., All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485 (7399), 486-9.90. Hao, F.; Stoumpos, C. C.; Chang, R. P.; Kanatzidis, M. G., Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc 2014, 136 (22), 8094-9.91. Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C. R.; Wang, C.; Xiao, Y.; Cimaroli, A. J.; Ellingson, R. J.; Podraza, N. J.; Zhu, K.; Xiong, R. G.; Yan, Y., Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. J Am Chem Soc 2016, 138 (38), 12360-3.92. Chi, D.; Huang, S.; Zhang, M.; Mu, S.; Zhao, Y.; Chen, Y.; You, J., Composition and Interface Engineering for Efficient and Thermally Stable Pb–Sn Mixed Low‐Bandgap Perovskite Solar Cells. Advanced Functional Materials 2018, 28 (51).93. Tong, J.; Song, Z.; Kim, D. H.; Chen, X.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G.; Liu, J.; Zhang, F.; Harvey, S. P.; Li, Z.; Christensen, S. T.; Teeter, G.; Zhao, D.; Al-Jassim, M. M.; van Hest, M.; Beard, M. C.; Shaheen, S. E.; Berry, J. J.;92Yan, Y.; Zhu, K., Carrier lifetimes of >1 mus in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364 (6439), 475-479.94. Kapil, G.; Bessho, T.; Maekawa, T.; Baranwal, A. K.; Zhang, Y.; Kamarudin, M. A.; Hirotani, D.; Shen, Q.; Segawa, H.; Hayase, S., Tin-Lead Perovskite Fabricated via Ethylenediamine Interlayer Guides to the Solar Cell Efficiency of 21.74%. Advanced Energy Materials 2021, 11 (25), 2101069.95. Kapil, G.; Bessho, T.; Sanehira, Y.; Sahamir, S. R.; Chen, M.; Baranwal, A. K.; Liu, D.; Sono, Y.; Hirotani, D.; Nomura, D.; Nishimura, K.; Kamarudin, M. A.; Shen, Q.; Segawa, H.; Hayase, S., Tin–Lead Perovskite Solar Cells Fabricated on Hole Selective Monolayers. ACS Energy Letters 2022, 7 (3), 966-974.96. Cao, J.; Loi, H. L.; Xu, Y.; Guo, X.; Wang, N.; Liu, C. K.; Wang, T.; Cheng, H.; Zhu, Y.; Li, M. G.; Wong, W. Y.; Yan, F., High-Performance Tin-Lead Mixed-Perovskite Solar Cells with Vertical Compositional Gradient. Adv Mater 2022, 34 (6), e2107729.97. Li, B.; Chang, B.; Pan, L.; Li, Z.; Fu, L.; He, Z.; Yin, L., Tin-Based Defects and Passivation Strategies in Tin-Related Perovskite Solar Cells. ACS Energy Letters 2020, 3752-3772.98. Liao, Y.; Jiang, X.; Zhou, W.; Shi, Z.; Li, B.; Mi, Q.; Ning, Z., Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells. Frontiers of Optoelectronics 2017, 10 (2), 103-110.99. Prasanna, R.; Leijtens, T.; Dunfield, S. P.; Raiford, J. A.; Wolf, E. J.; Swifter, S. A.; Werner, J.; Eperon, G. E.; de Paula, C.; Palmstrom, A. F.; Boyd, C. C.; van Hest, M. F. A. M.; Bent, S. F.; Teeter, G.; Berry, J. J.; McGehee, M. D., Design of low bandgap tin–lead halide perovskite solar cells93to achieve thermal, atmospheric and operational stability. Nature Energy 2019, 4 (11), 939-947.100. Kim, H.; Lee, J. W.; Han, G. R.; Kim, Y. J.; Kim, S. H.; Kim, S. K.; Kwak, S. K.; Oh, J. H., Highly Efficient Hole Transport Layer-Free Low Bandgap Mixed Pb–Sn Perovskite Solar Cells Enabled by a Binary Additive System. Advanced Functional Materials 2022, 32 (12), 2110069.101. Zhang, S.; Audebert, P.; Wei, Y.; Al Choueiry, A.; Lanty, G.; Bréhier, A.; Galmiche, L.; Clavier, G.; Boissière, C.; Lauret, J.-S.; Deleporte, E., Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors. Materials 2010, 3 (5), 3385-3406.102. Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P.; Kanatzidis, M. G., Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. J Am Chem Soc 2015, 137 (35), 11445-52.103. Jokar, E.; Chien, C.-H.; Fathi, A.; Rameez, M.; Chang, Y.-H.; Diau, E. W.-G., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy & Environmental Science 2018, 11 (9), 2353-2362.104. Ke, W.; Chen, C.; Spanopoulos, I.; Mao, L.; Hadar, I.; Li, X.; Hoffman, J. M.; Song, Z.; Yan, Y.; Kanatzidis, M. G., Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion-Jacobson Perovskites Boost the Performance of Solar Cells. J Am Chem Soc 2020, 142 (35), 15049-15057.94105. Yang, W. F.; Igbari, F.; Lou, Y. H.; Wang, Z. K.; Liao, L. S., Tin Halide Perovskites: Progress and Challenges. Advanced Energy Materials 2019, 10 (13).106. Lv, S.; Gao, W.; Liu, Y.; Dong, H.; Sun, N.; Niu, T.; Xia, Y.; Wu, Z.; Song, L.; Ran, C.; Fu, L.; Chen, Y., Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells: Progress, challenges, and perspectives. Journal of Energy Chemistry 2022, 65, 371-404.107. Werner, J.; Barraud, L.; Walter, A.; Bräuninger, M.; Sahli, F.; Sacchetto, D.; Tétreault, N.; Paviet-Salomon, B.; Moon, S.-J.; Allebé, C.; Despeisse, M.; Nicolay, S.; De Wolf, S.; Niesen, B.; Ballif, C., Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Letters 2016, 1 (2), 474-480.108. Rohatgi, A.; Zhu, K.; Tong, J.; Kim, D. H.; Reichmanis, E.; Rounsaville, B.; Prakash, V.; Ok, Y.-W., 26.7% Efficient 4-Terminal Perovskite–Silicon Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si/SiOx Passivating Contact Silicon Cell. IEEE Journal of Photovoltaics 2020, 10 (2), 417-422.109. Shen, H.; Walter, D.; Wu, Y.; Fong, K. C.; Jacobs, D. A.; Duong, T.; Peng, J.; Weber, K.; White, T. P.; Catchpole, K. R., Monolithic Perovskite/Si Tandem Solar Cells: Pathways to Over 30% Efficiency. Advanced Energy Materials 2020, 10 (13), 1902840.110. Han, Q.; Hsieh, Y. T.; Meng, L.; Wu, J. L.; Sun, P.; Yao, E. P.; Chang, S. Y.; Bae, S. H.; Kato, T.; Bermudez, V.; Yang, Y., High-95performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science 2018, 361 (6405), 904-908.111. Zhao, P.; Feng, L.; Lin, Z.; Wang, J.; Su, J.; Hu, Z.; Zhang, J.; Ouyang, X.; Chang, J.; Hao, Y., Theoretical Analysis of Two‐Terminal and Four‐Terminal Perovskite/Copper Indium Gallium Selenide Tandem Solar Cells. Solar RRL 2019, 3 (11), 1900303.112. Todorov, T.; Gershon, T.; Gunawan, O.; Lee, Y. S.; Sturdevant, C.; Chang, L.-Y.; Guha, S., Monolithic Perovskite-CIGS Tandem Solar Cells via In Situ Band Gap Engineering. Advanced Energy Materials 2015, 5 (23), 1500799.113. Hörantner, M. T.; Leijtens, T.; Ziffer, M. E.; Eperon, G. E.; Christoforo, M. G.; McGehee, M. D.; Snaith, H. J., The Potential of Multijunction Perovskite Solar Cells. ACS Energy Letters 2017, 2 (10), 2506-2513.114. Jošt, M.; Kegelmann, L.; Korte, L.; Albrecht, S., Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Advanced Energy Materials 2020, 10 (26).115. Giles E. Eperon; Tomas Leijtens; Kevin A. Bush; Rohit Prasanna; Thomas Green; Jacob Tse-Wei Wang; David P. McMeekin; George Volonakis; Rebecca L. Milot; Richard May; Axel Palmstrom; Daniel J. Slotcavage; Rebecca A. Belisle; Jay B. Patel; Elizabeth S. Parrott; Rebecca J. Sutton; Wen Ma; Farhad Moghadam; Bert Conings; Aslihan Babayigit; Hans-Gerd Boyen; Stacey Bent; Feliciano Giustino; Laura M. Herz; Michael B. Johnston; Michael D. McGehee; Snaith, H. J., Perovskite-96perovskite tandem photovoltaics with optimized bandgaps. Science 2016, 861-865.116. Prasanna, R.; Gold-Parker, A.; Leijtens, T.; Conings, B.; Babayigit, A.; Boyen, H. G.; Toney, M. F.; McGehee, M. D., Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. J Am Chem Soc 2017, 139 (32), 11117-11124.117. Tomas Leijtens; Rohit Prasanna; Kevin A. Bush; Giles E. Eperon; James A. Raiford; Aryeh Gold-Parker; Eli J. Wolf; Simon A. Swifter; Caleb C. Boyd; Hsin-Ping Wang; Michael F. Toney; Stacey F. Bente; McGehee, M. D., Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustainable Energy Fuels 2018, 2, 2450–2459.118. Huang, Y.; Liu, T.; Li, D.; Zhao, D.; Amini, A.; Cheng, C.; Xing, G., Limitations and solutions for achieving high-performance perovskite tandem photovoltaics. Nano Energy 2021, 88.119. Yuan, Y.; Huang, J.; Li, G., Intermediate Layers in Tandem Organic Solar Cells. Green 2011, 1 (1).120. Huang, Y.; Liu, T.; Liang, C.; Xia, J.; Li, D.; Zhang, H.; Amini, A.; Xing, G.; Cheng, C., Towards Simplifying the Device Structure of High‐Performance Perovskite Solar Cells. Advanced Functional Materials 2020, 30 (28).121. Wang, Y.; Yue, Y.; Yang, X.; Han, L., Toward Long-Term Stable and Highly Efficient Perovskite Solar Cells via Effective Charge Transporting Materials. Advanced Energy Materials 2018, 8 (22).97122. Stolterfoht, M.; Wolff, C. M.; Márquez, J. A.; Zhang, S.; Hages, C. J.; Rothhardt, D.; Albrecht, S.; Burn, P. L.; Meredith, P.; Unold, T.; Neher, D., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nature Energy 2018, 3 (10), 847-854.123. Liu, X.; Yu, Z.; Wang, T.; Chiu, K. L.; Lin, F.; Gong, H.; Ding, L.; Cheng, Y., Full Defects Passivation Enables 21% Efficiency Perovskite Solar Cells Operating in Air. Advanced Energy Materials 2020, 10 (38).124. Wolff, C. M.; Caprioglio, P.; Stolterfoht, M.; Neher, D., Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Adv. Mater. 2019, e1902762.125. Song, T. B.; Yokoyama, T.; Stoumpos, C. C.; Logsdon, J.; Cao, D. H.; Wasielewski, M. R.; Aramaki, S.; Kanatzidis, M. G., Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. J Am Chem Soc 2017, 139 (2), 836-842.126. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex. Journal of the American Chemical Society 2016, 138 (12), 3974-3977.127. Zhou, X.; Zhang, L.; Wang, X.; Liu, C.; Chen, S.; Zhang, M.; Li, X.; Yi, W.; Xu, B., Highly Efficient and Stable GABr-Modified Ideal-Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small Voc Deficit of 0.33 V. Adv Mater 2020, 32 (14), e1908107.98128. Wang, C.; Zhang, Y.; Gu, F.; Zhao, Z.; Li, H.; Jiang, H.; Bian, Z.; Liu, Z., Illumination Durability and High-Efficiency Sn-Based Perovskite Solar Cell under Coordinated Control of Phenylhydrazine and Halogen Ions. Matter 2020.129. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8 (6), 489-494.130. Ke, W.; Xiao, C.; Wang, C.; Saparov, B.; Duan, H. S.; Zhao, D.; Xiao, Z.; Schulz, P.; Harvey, S. P.; Liao, W.; Meng, W.; Yu, Y.; Cimaroli, A. J.; Jiang, C. S.; Zhu, K.; Al-Jassim, M.; Fang, G.; Mitzi, D. B.; Yan, Y., Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells. Adv Mater 2016, 28 (26), 5214-21.131. Tong, J.; Song, Z.; Kim, D. H.; Chen, X.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G.; Liu, J.; Zhang, F.; Harvey, S. P.; Li, Z.; Christensen, S. T.; Teeter, G.; Zhao, D.; Al-Jassim, M. M.; van Hest, M. F. A. M.; Beard, M. C.; Shaheen, S. E.; Berry, J. J.; Yan, Y.; Zhu, K., Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364 (6439), 475-479.132. Alharbi, E. A.; Alyamani, A. Y.; Kubicki, D. J.; Uhl, A. R.; Walder, B. J.; Alanazi, A. Q.; Luo, J.; Burgos-Caminal, A.; Albadri, A.; Albrithen, H.; Alotaibi, M. H.; Moser, J. E.; Zakeeruddin, S. M.; Giordano, F.; Emsley, L.; Gratzel, M., Atomic-level passivation mechanism99of ammonium salts enabling highly efficient perovskite solar cells. Nat Commun 2019, 10 (1), 3008.133. Nakanishi, E.; Nishikubo, R.; Wakamiya, A.; Saeki, A., How the Mixed Cations (Guanidium, Formamidinium, and Phenylethylamine) in Tin Iodide Perovskites Affect Their Charge Carrier Dynamics and Solar Cell Characteristics. J Phys Chem Lett 2020, 11 (10), 4043-4051.134. Li, F.; Xie, Y.; Hu, Y.; Long, M.; Zhang, Y.; Xu, J.; Qin, M.; Lu, X.; Liu, M., Effects of Alkyl Chain Length on Crystal Growth and Oxidation Process of Two-Dimensional Tin Halide Perovskites. ACS Energy Letters 2020, 5 (5), 1422-1429.135. Wang, F.; Yu, H.; Xu, H.; Zhao, N., HPbI3: A New Precursor Compound for Highly Efficient Solution-Processed Perovskite Solar Cells. Advanced Functional Materials 2015, 25 (7), 1120-1126.136. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014, 7 (3), 982-988.137. Wang, K.; Jin, Z.; Liang, L.; Bian, H.; Bai, D.; Wang, H.; Zhang, J.; Wang, Q.; Liu, S., All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15. Nat Commun 2018, 9 (1), 4544.138. Ke, W.; Spanopoulos, I.; Stoumpos, C. C.; Kanatzidis, M. G., Myths and reality of HPbI3 in halide perovskite solar cells. Nat Commun 2018, 9 (1), 4785.139. Chen, Q.; Wu, J.; Matondo, J. T.; Bai, L.; Maurice, D. M.; Guli, M., Optimization of Bulk Defects in Sn/Pb Mixed Perovskite Solar Cells100Through Synergistic Effect of Potassium Thiocyanate. Solar RRL 2020, 4 (12), 2000584.140. Haque, F.; Wright, M.; Mahmud, M. A.; Yi, H.; Wang, D.; Duan, L.; Xu, C.; Upama, M. B.; Uddin, A., Effects of Hydroiodic Acid Concentration on the Properties of CsPbI3 Perovskite Solar Cells. ACS Omega 2018, 3 (9), 11937-11944.141. Carbone, A.; Kotowska, B. K.; Kotowski, D., Space-charge-limited current fluctuations in organic semiconductors. Phys Rev Lett 2005, 95 (23), 236601.142. Li, D.; Kong, W.; Zhang, H.; Wang, D.; Li, W.; Liu, C.; Chen, H.; Song, W.; Gao, F.; Amini, A.; Xu, B.; Li, S.; Cheng, C., Bifunctional Ultrathin PCBM Enables Passivated Trap States and Cascaded Energy Level toward Efficient Inverted Perovskite Solar Cells. ACS Appl Mater Interfaces 2020, 12 (17), 20103-20109.143. Liu, X.; Cheng, Y.; Liu, C.; Zhang, T.; Zhang, N.; Zhang, S.; Chen, J.; Xu, Q.; Ouyang, J.; Gong, H., 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy & Environmental Science 2019, 12 (5), 1622-1633.144. Mandoc, M. M.; Kooistra, F. B.; Hummelen, J. C.; de Boer, B.; Blom, P. W. M., Effect of traps on the performance of bulk heterojunction organic solar cells. Applied Physics Letters 2007, 91 (26).145. Wetzelaer, G. J.; Scheepers, M.; Sempere, A. M.; Momblona, C.; Avila, J.; Bolink, H. J., Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv Mater 2015, 27 (11), 1837-41.101146. Wu, S.; Zhang, J.; Li, Z.; Liu, D.; Qin, M.; Cheung, S. H.; Lu, X.; Lei, D.; So, S. K.; Zhu, Z.; Jen, A. K. Y., Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells. Joule 2020, 4 (6), 1248-1262.147. Maiberg, M.; Hölscher, T.; Zahedi-Azad, S.; Scheer, R., Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the band gap. Journal of Applied Physics 2015, 118 (10).148. Maiberg, M.; Scheer, R., Theoretical study of time-resolved luminescence in semiconductors. II. Pulsed excitation. Journal of Applied Physics 2014, 116 (12), 123711.149. Wu, B.; Nguyen, H. T.; Ku, Z.; Han, G.; Giovanni, D.; Mathews, N.; Fan, H. J.; Sum, T. C., Discerning the Surface and Bulk Recombination Kinetics of Organic-Inorganic Halide Perovskite Single Crystals. Advanced Energy Materials 2016, 6 (14).150. Choi, W.-G.; Park, C.-G.; Kim, Y.; Moon, T., Sn Perovskite Solar Cells via 2D/3D Bilayer Formation through a Sequential Vapor Process. ACS Energy Letters 2020, 5 (11), 3461-3467.151. Li, M.; Zuo, W.-W.; Yang, Y.-G.; Aldamasy, M. H.; Wang, Q.; Cruz, S. H. T.; Feng, S.-L.; Saliba, M.; Wang, Z.-K.; Abate, A., Tin Halide Perovskite Films Made of Highly Oriented 2D Crystals Enable More Efficient and Stable Lead-free Perovskite Solar Cells. ACS Energy Letters 2020, 5 (6), 1923-1929.152. Chen, Z.; Wang, J. J.; Ren, Y.; Yu, C.; Shum, K., Schottky solar cells based on CsSnI3 thin-films. Applied Physics Letters 2012, 101 (9).102153. Marshall, K. P.; Walker, M.; Walton, R. I.; Hatton, R. A., Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy 2016, 1 (12).154. Tsai, C.-M.; Lin, Y.-P.; Pola, M. K.; Narra, S.; Jokar, E.; Yang, Y.-W.; Diau, E. W.-G., Control of Crystal Structures and Optical Properties with Hybrid Formamidinium and 2-Hydroxyethylammonium Cations for Mesoscopic Carbon-Electrode Tin-Based Perovskite Solar Cells. ACS Energy Letters 2018, 3 (9), 2077-2085.155. Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J.-P.; Bulović, V.; Shin, S. S.; Bawendi, M. G.; Seo, J., Efficient perovskite solar cells via improved carrier management. Nature 2021, 590 (7847), 587-593.156. Kim, M.; Jeong, J.; Lu, H.; Lee, T. K.; Eickemeyer, F. T.; Liu, Y.; Choi, I. W.; Choi, S. J.; Jo, Y.; Kim, H. B.; Mo, S. I.; Kim, Y. K.; Lee, H.; An, N. G.; Cho, S.; Tress, W. R.; Zakeeruddin, S. M.; Hagfeldt, A.; Kim, J. Y.; Gratzel, M.; Kim, D. S., Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 2022, 375 (6578), 302-306.157. Shen, Z.; Han, Q.; Luo, X.; Shen, Y.; Wang, T.; Zhang, C.; Wang, Y.; Chen, H.; Yang, X.; Zhang, Y.; Han, L., Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells. Energy & Environmental Science 2022, 15 (3), 1078-1085.158. Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G.; Shin, T. J.; Il Seok, S.,103Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598 (7881), 444-450.159. Cao, J.; Loi, H.-L.; Xu, Y.; Guo, X.; Wang, N.; Liu, C.-k.; Wang, T.; Cheng, H.; Zhu, Y.; Li, M. G.; Wong, W.-Y.; Yan, F., High-Performance Tin–Lead Mixed-Perovskite Solar Cells with Vertical Compositional Gradient. 2022, 34 (6), 2107729.160. Palmstrom, A. F.; Eperon, G. E.; Leijtens, T.; Prasanna, R.; Habisreutinger, S. N.; Nemeth, W.; Gaulding, E. A.; Dunfield, S. P.; Reese, M.; Nanayakkara, S.; Moot, T.; Werner, J.; Liu, J.; To, B.; Christensen, S. T.; McGehee, M. D.; van Hest, M. F. A. M.; Luther, J. M.; Berry, J. J.; Moore, D. T., Enabling Flexible All-Perovskite Tandem Solar Cells. Joule 2019, 3 (9), 2193-2204.161. Xiao, K.; Lin, R.; Han, Q.; Hou, Y.; Qin, Z.; Nguyen, H. T.; Wen, J.; Wei, M.; Yeddu, V.; Saidaminov, M. I.; Gao, Y.; Luo, X.; Wang, Y.; Gao, H.; Zhang, C.; Xu, J.; Zhu, J.; Sargent, E. H.; Tan, H., All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy 2020, 5 (11), 870-880.162. Zhou, Z.; Pang, S., Highly efficient inverted hole-transport-layer-free perovskite solar cells. Journal of Materials Chemistry A 2020, 8 (2), 503-512.163. Han, Q.; Wei, Y.; Lin, R.; Fang, Z.; Xiao, K.; Luo, X.; Gu, S.; Zhu, J.; Ding, L.; Tan, H., Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Science Bulletin 2019, 64 (19), 1399-1401.104164. Cameron, J.; Skabara, P. J., The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Materials Horizons 2020, 7 (7), 1759-1772.165. Wei, Q.; Ke, Y.; Ning, Z., Theoretical Study of Using Kinetics Strategy to Enhance the Stability of Tin Perovskite. Energy & Environmental Materials 2020, 3 (4), 541-547.166. Ricciarelli, D.; Meggiolaro, D.; Ambrosio, F.; De Angelis, F., Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation. ACS Energy Letters 2020, 5 (9), 2787-2795.167. Lim, E. L.; Hagfeldt, A.; Bi, D., Toward highly efficient and stable Sn2+ and mixed Pb2+/Sn2+ based halide perovskite solar cells through device engineering. Energy & Environmental Science 2021, 14 (6), 3256-3300.168. Cao, J.; Yan, F., Recent progress in tin-based perovskite solar cells. Energy & Environmental Science 2021, 14 (3), 1286-1325.169. Jiang, X.; Zang, Z.; Zhou, Y.; Li, H.; Wei, Q.; Ning, Z., Tin Halide Perovskite Solar Cells: An Emerging Thin-Film Photovoltaic Technology. Accounts of Materials Research 2021, 2 (4), 210-219.170. Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J Am Chem Soc 2015, 137 (27), 8696-9.171. Keawprajak, A.; Koetniyom, W.; Piyakulawat, P.; Jiramitmongkon, K.; Pratontep, S.; Asawapirom, U., Effects of tetramethylene sulfone solvent additives on conductivity of PEDOT:PSS film and performance of polymer photovoltaic cells. Organic Electronics 2013, 14 (1), 402-410.105172. Ivor Wharf, T. G., Ramesh Makhija, Mario Onyszchuk, Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands. Canadian Journal of Chemistry 1976, 54 (21).173. Song, C.; Li, X.; Wang, Y.; Fu, S.; Wan, L.; Liu, S.; Zhang, W.; Song, W.; Fang, J., Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A 2019, 7 (34), 19881-19888.174. Ren, Y.; Ding, X.; Zhu, J.; Hayat, T.; Alsaedi, A.; Li, Z.; Xu, X.; Ding, Y.; Yang, S.; Kong, M.; Dai, S., A Bi-functional additive for linking PI 2 and decreasing defects in organo-halide perovskites. Journal of Alloys and Compounds 2018, 758, 171-176.175. Baranwal, A. K.; Saini, S.; Wang, Z.; Hamada, K.; Hirotani, D.; Nishimura, K.; Kamarudin, M. A.; Kapil, G.; Yabuki, T.; Iikubo, S.; Shen, Q.; Miyazaki, K.; Hayase, S., Effect of Precursor Solution Aging on the Thermoelectric Performance of CsSnI3 Thin Film. Journal of Electronic Materials 2019, 49 (5), 2698-2703.176. Park, C.; Choi, J.; Min, J.; Cho, K., Suppression of Oxidative Degradation of Tin–Lead Hybrid Organometal Halide Perovskite Solar Cells by Ag Doping. ACS Energy Letters 2020, 5 (10), 3285-3294.177. Bin, Z.; Li, J.; Wang, L.; Duan, L., Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy & Environmental Science 2016, 9 (11), 3424-3428.178. Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z.; Liu, T.; Chen, K.; Ye, F.; Wu, P.; Zhao, L.; Wu, J.; Tu, Y.; Zhang, Y.; Yang, X.; Zhang,106W.; Friend, R. H.; Gong, Q.; Snaith, H. J.; Zhu, R., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360 (6396), 1442-1446.179. Liu, Z.; Hu, J.; Jiao, H.; Li, L.; Zheng, G.; Chen, Y.; Huang, Y.; Zhang, Q.; Shen, C.; Chen, Q.; Zhou, H., Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Adv Mater 2017, 29 (23).180. Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M., Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Applied Physics Letters 2005, 86 (12).181. Glowienka, D.; Galagan, Y., Light Intensity Analysis of Photovoltaic Parameters for Perovskite Solar Cells. Adv Mater 2022, 34 (2), e2105920.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/489754
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Hu H. Composition and Interface Engineering Towards Efficient Lead-Lean Perovskite Solar Cells[D]. 新加坡. 新加坡国立大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11855015-胡杭 -材料科学与工程(4809KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[胡杭]的文章
百度学术
百度学术中相似的文章
[胡杭]的文章
必应学术
必应学术中相似的文章
[胡杭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。