中文版 | English
题名

Boundary-enhanced semi-supervised retinal layer segmentation in optical coherence tomography images using fewer labels

作者
发表日期
2023-04-01
DOI
发表期刊
ISSN
0895-6111
EISSN
1879-0771
卷号105
摘要
Automatic segmentation of multiple layers in retinal optical coherence tomography (OCT) images is crucial for eye disease diagnosis and treatment. Despite the success of deep learning algorithms, it still remains a challenge due to the blurry layer boundaries and lack of adequate pixel-wise annotations. To tackle these issues, we propose a Boundary-Enhanced Semi-supervised Network (BE-SemiNet) that exploits an auxiliary distance map regression task to improve retinal layer segmentation with scarce labeled data and abundant unlabeled data. Specifically, a novel Unilaterally Truncated Distance Map (UTDM) is firstly introduced to alleviate the class imbalance problem and enhance the layer boundary learning in the regression task. Then for the pixel-wise segmentation and UTDM regression branches, we impose task-level and data-level consistency regularization on unlabeled data to enrich the diversity of unsupervised information and improve the regularization effects. Pseudo supervision is incorporated in consistency regularization to bridge the task prediction spaces for consistency and expand training labeled data. Experiments on two public retinal OCT datasets show that our method can greatly improve the supervised baseline performance with only 5 annotations and outperform the state-of-the-art methods. Since it is difficult and labor-expensive to obtain adequate pixel-wise annotations in practice, our method has a promising application future in clinical retinal OCT image analysis.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key R&D program of China[2019YFB1312400] ; Hong Kong RGC CRF[C4063-18G]
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000943940200001
出版者
EI入藏号
20230813615643
EI主题词
Deep learning ; Diagnosis ; Image enhancement ; Image segmentation ; Learning algorithms ; Ophthalmology ; Pixels ; Regression analysis
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Machine Learning:723.4.2 ; Optical Devices and Systems:741.3 ; Mathematical Statistics:922.2
ESI学科分类
CLINICAL MEDICINE
Scopus记录号
2-s2.0-85148332754
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/489756
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering,The Chinese University of Hong Kong,Hong Kong
2.Department of Electrical Engineering,The City University of Hong Kong,Hong Kong
3.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,China
4.Shenzhen Research Institute of The Chinese University of Hong Kong,Shenzhen,China
推荐引用方式
GB/T 7714
Lu,Ye,Shen,Yutian,Xing,Xiaohan,et al. Boundary-enhanced semi-supervised retinal layer segmentation in optical coherence tomography images using fewer labels[J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS,2023,105.
APA
Lu,Ye,Shen,Yutian,Xing,Xiaohan,Ye,Chengwei,&Meng,Max Q.H..(2023).Boundary-enhanced semi-supervised retinal layer segmentation in optical coherence tomography images using fewer labels.COMPUTERIZED MEDICAL IMAGING AND GRAPHICS,105.
MLA
Lu,Ye,et al."Boundary-enhanced semi-supervised retinal layer segmentation in optical coherence tomography images using fewer labels".COMPUTERIZED MEDICAL IMAGING AND GRAPHICS 105(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lu,Ye]的文章
[Shen,Yutian]的文章
[Xing,Xiaohan]的文章
百度学术
百度学术中相似的文章
[Lu,Ye]的文章
[Shen,Yutian]的文章
[Xing,Xiaohan]的文章
必应学术
必应学术中相似的文章
[Lu,Ye]的文章
[Shen,Yutian]的文章
[Xing,Xiaohan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。