中文版 | English
题名

Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images

作者
通讯作者Chen, Long; Zhang, Na
发表日期
2023-02-01
DOI
发表期刊
ISSN
2223-4292
EISSN
2223-4306
卷号13期号:3页码:1286-1299
摘要
Background: Predicting the mutation status of the epidermal growth factor receptor (EGFR) gene based on an integrated positron emission tomography/computed tomography (PET/CT) image of non-small cell lung cancer (NSCLC) is a noninvasive, low-cost method which is valuable for targeted therapy. Although deep learning has been very successful in robotic vision, it is still challenging to predict gene mutations in PET/CT-derived studies because of the small amount of medical data and the different parameters of PET/ CT devices.Methods: We used the advanced EfficientNet-V2 model to predict the EGFR mutation based on fused PET/CT images. First, we extracted 3-dimensional (3D) pulmonary nodules from PET and CT as regions of interest (ROIs). We then fused each single PET and CT image. The network model was used to predict the mutation status of lung nodules by the new data after fusion, and the model was weighted adaptively. The EfficientNet-V2 model used multiple channels to represent nodules comprehensively.Results: We trained the EfficientNet-V2 model through our PET/CT fusion algorithm using a dataset of 150 patients. The prediction accuracy of EGFR and non-EGFR mutations was 86.25% in the training dataset, and the accuracy rate was 81.92% in the validation set.Conclusions: Combined with experiments, the demonstrated PET/CT fusion algorithm outperformed radiomics methods in predicting EGFR and non-EGFR mutations in NSCLC.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
Natural Science Foundation of Guangdong Province in China[2020A1515010733] ; National High-Level Hospital Clinical Research Funding[2022-PUMCH-B-070]
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000927492100001
出版者
Scopus记录号
2-s2.0-85149013817
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/489988
专题南方科技大学
作者单位
1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Lauterbur Res Ctr Biomed Imaging, 1068 Xueyuan Ave, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen, Peoples R China
3.Kunming Med Univ, Yunnan Canc Hosp, Dept PET, Canc Ctr Yunnan Prov,CT Ctr,Affiliated Hosp 3, 519 Kunzhou Rd, Kunming 650118, Peoples R China
4.Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Ctr Rare Dis Res, Beijing Key Lab Mol Targeted Diag & Therapy Nucl M, Beijing, Peoples R China
5.Univ Hong Kong, Li Ka Shing Fac Med, Clin Sch Med, Dept Diagnost Radiol, Hong Kong, Peoples R China
6.Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc,Dept Nucl Med, Shenzhen, Peoples R China
7.Chinese Acad Med Sci & Peking Union Med Coll, Shenzhen Hosp, Shenzhen, Peoples R China
8.Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
第一作者单位南方科技大学
推荐引用方式
GB/T 7714
Xiao, Zhenghui,Cai, Haihua,Wang, Yue,et al. Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images[J]. Quantitative Imaging in Medicine and Surgery,2023,13(3):1286-1299.
APA
Xiao, Zhenghui.,Cai, Haihua.,Wang, Yue.,Cui, Ruixue.,Huo, Li.,...&Zhang, Na.(2023).Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images.Quantitative Imaging in Medicine and Surgery,13(3),1286-1299.
MLA
Xiao, Zhenghui,et al."Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images".Quantitative Imaging in Medicine and Surgery 13.3(2023):1286-1299.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao, Zhenghui]的文章
[Cai, Haihua]的文章
[Wang, Yue]的文章
百度学术
百度学术中相似的文章
[Xiao, Zhenghui]的文章
[Cai, Haihua]的文章
[Wang, Yue]的文章
必应学术
必应学术中相似的文章
[Xiao, Zhenghui]的文章
[Cai, Haihua]的文章
[Wang, Yue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。