中文版 | English
题名

Differential evolution guided by approximated Pareto set for multiobjective optimization

作者
通讯作者Zhou,Aimin
发表日期
2023-06-01
DOI
发表期刊
ISSN
0020-0255
EISSN
1872-6291
卷号630页码:669-687
摘要

Differential evolution (DE), as an efficient evolutionary optimizer, has been widely applied to deal with multiobjective optimization problems. In DE generation operations, appropriate guiding solutions, the “best” solutions (denoted as x), will be in favor of the search for generating promising new trial solutions. However, it is still a challenge to define and select such x due to the Pareto property of multiobjective optimization. Facing this challenge, we propose a regularity model guided differential evolution (RMDE) for multiobjective optimization. Different from the existing studies that select x from non-dominated solutions or predefined preference solutions, the proposed RMDE aims to sample the guiding solutions from the regularity models that are built to approximate Pareto optimal set explicitly. In this way, four alternative RMDE mutation strategies with the sampled x are developed and investigated, including the search efficiency and parameter settings. Empirical studies are conducted to validate the performance of RMDE on 51 test instances. The experimental results demonstrate the advantages of the proposed method over seven other classical or newly developed algorithms from the literature.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Scientific and Technological Innovation 2030 Major Projects[2018AAA0100902] ; Science and Technology Commission of Shanghai Municipality[19511120601]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000949422000001
出版者
EI入藏号
20230913658678
EI主题词
Evolutionary algorithms ; Pareto principle
EI分类号
Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85149058864
来源库
Scopus
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/497225
专题工学院_计算机科学与工程系
作者单位
1.Shanghai Institute of AI for Education,School of Computer Science and Technology,East China Normal University,Shanghai,200062,China
2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Wang,Shuai,Zhou,Aimin,Li,Bingdong,et al. Differential evolution guided by approximated Pareto set for multiobjective optimization[J]. INFORMATION SCIENCES,2023,630:669-687.
APA
Wang,Shuai,Zhou,Aimin,Li,Bingdong,&Yang,Peng.(2023).Differential evolution guided by approximated Pareto set for multiobjective optimization.INFORMATION SCIENCES,630,669-687.
MLA
Wang,Shuai,et al."Differential evolution guided by approximated Pareto set for multiobjective optimization".INFORMATION SCIENCES 630(2023):669-687.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Differential evoluti(1399KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Shuai]的文章
[Zhou,Aimin]的文章
[Li,Bingdong]的文章
百度学术
百度学术中相似的文章
[Wang,Shuai]的文章
[Zhou,Aimin]的文章
[Li,Bingdong]的文章
必应学术
必应学术中相似的文章
[Wang,Shuai]的文章
[Zhou,Aimin]的文章
[Li,Bingdong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。