[1] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. “Diffuse-interface methods in fluid mechanics”. In: Annual Review of Fluid Mechanics 30 (1998), pp. 139–165.
[2] W. Bao, W. Jiang, Y. Wang, and Q. Zhao. “A parametric finite element method forsolid-state dewetting problems with anisotropic surface energies”. In: Journal ofComputational Physics 330 (2017), pp. 380–400.
[3] J. W. Barrett, H. Garcke, and R. Nürnberg. “A parametric finite element methodfor fourth order geometric evolution equations”. In: Journal of ComputationalPhysics 222 (2007), pp. 441–467.
[4] J. W. Barrett, H. Garcke, and R. Nürnberg. “On the variational approximationof combined second and fourth order geometric evolution equations”. In: SIAMJournal on Scientific Computing 29 (2007), pp. 1006–1041.
[5] I. B. Bazhlekov, P. D. Anderson, and H. E. Meijer. “Numerical investigation ofthe effect of insoluble surfactants on drop deformation and breakup in simpleshear flow”. In: Journal of Colloid and Interface Science 298 (2006), pp. 369–394.
[6] J. B. Bell, P. Colella, and H. M. Glaz. “A second-order projection method for theincompressible Navier-Stokes equations”. In: Journal of Computational Physics 85(1989), pp. 257–283.
[7] T. D. Blake. “The physics of moving wetting lines”. In: Journal of Colloid andInterface Science 299 (2006), pp. 1–13.
[8] T. D. Blake and J. De Coninck. “The influence of solid–liquid interactions ondynamic wetting”. In: Advances in Colloid and Interface Science 96 (2002), pp. 21–36.
[9] T. D. Blake and J. Haynes. “Kinetics of liquidliquid displacement”. In: Journal ofColloid and Interface Science 30 (1969), pp. 421–423.
[10] F. Brochard-Wyart and P. G. De Gennes. “Dynamics of partial wetting”. In: Advances in Colloid and Interface Science 39 (1992), pp. 1–11.
[11] D. L. Brown, R. Cortez, and M. L. Minion. “Accurate projection methods for theincompressible Navier–Stokes equations”. In: Journal of Computational Physics168 (2001), pp. 464–499.
[12] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. “CutFEM: discretizing geometry and partial differential equations”. In: International Journalfor Numerical Methods in Engineering 104 (2015), pp. 472–501.
[13] E. Burman and P. Hansbo. “Fictitious domain finite element methods using cutelements: II. A stabilized Nitsche method”. In: Applied Numerical Mathematics 62(2012), pp. 328–341.
[14] S. Chai, Z. Zhang, and Z. Zhang. “A second order accuracy preserving methodfor moving contact lines with Stokes flow”. In: Journal of Computational Physics445 (2021), p. 110607.
[15] J. Chessa and T. Belytschko. “An extended finite element method for two-phasefluids”. In: Journal of Applied Mechanics 70 (2003), pp. 10–17.
[16] A. J. Chorin. “Numerical solution of the Navier-Stokes equations”. In: Mathematics of Computation 22 (1968), pp. 745–762.
[17] R. Cox. “The dynamics of the spreading of liquids on a solid surface. Part 1.Viscous flow”. In: Journal of Fluid Mechanics 168 (1986), pp. 169–194.
[18] B. J De Gans, P. C. Duineveld, and U. S. Schubert. “Inkjet printing of polymers: state of the art and future developments”. In: Advanced Materials 16 (2004),pp. 203–213.
[19] S. R. De Groot and P. Mazur. Non-equilibrium Thermodynamics. Courier Corporation, 2013.
[20] P. Dimitrakopoulos and J. J. L. Higdon. “On the gravitational displacement ofthree-dimensional fluid droplets from inclined solid surfaces”. In: Journal of FluidMechanics 395 (1999), pp. 181–209.
[21] M. Doi. “Onsager’s variational principle in soft matter”. In: Journal of Physics:Condensed Matter 23 (2011), p. 284118.
[22] J.-B. Dupont and D. Legendre. “Numerical simulation of static and sliding dropwith contact angle hysteresis”. In: Journal of Computational Physics 229 (2010),pp. 2453–2478.
[23] E. B. Dussan V. “On the spreading of liquids on solid surfaces: static and dynamic contact lines”. In: Annual Review of Fluid Mechanics 11 (1979), pp. 371–400.
[24] E. B. Dussan V and S. H. Davis. “On the motion of a fluid-fluid interface alonga solid surface”. In: Journal of Fluid Mechanics 65 (1974), pp. 71–95.
[25] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. “A hybrid particle level setmethod for improved interface capturing”. In: Journal of Computational Physics183 (2002), pp. 83–116.
[26] R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. “A non-oscillatory Eulerianapproach to interfaces in multimaterial flows (the ghost fluid method)”. In: Journal of Computational Physics 152 (1999), pp. 457–492.
[27] T.-P. Fries and T. Belytschko. “The extended/generalized finite element method:an overview of the method and its applications”. In: International Journal for Numerical Methods in Engineering 84 (2010), pp. 253–304.
[28] T. Fullana, S. Zaleski, and S. Popinet. “Dynamic wetting failure in curtain coating by the Volume-of-Fluid method”. In: The European Physical Journal SpecialTopics 229 (2020), pp. 1923–1934.
[29] S. Ganesan and L. Tobiska. “Arbitrary Lagrangian–Eulerian finite-element methodfor computation of two-phase flows with soluble surfactants”. In: Journal of Computational Physics 231 (2012), pp. 3685–3702.
[30] Y. Gao and J.-G. Liu. “Gradient flow formulation and second order numericalmethod for motion by mean curvature and contact line dynamics on rough surface”. In: arXiv preprint arXiv:2001.04036 (2020).
[31] J.-F. Gerbeau and T. Lelievre. “Generalized Navier boundary condition and geometric conservation law for surface tension”. In: Computer Methods in AppliedMechanics and Engineering 198 (2009), pp. 644–656.
[32] F. Gibou, R. P. Fedkiw, L.-T. Cheng, and M. Kang. “A second-order-accuratesymmetric discretization of the Poisson equation on irregular domains”. In:Journal of Computational Physics 176 (2002), pp. 205–227.
[33] J. Glimm, J. W. Grove, X. L. Li, and D. C. Tan. “Robust computational algorithmsfor dynamic interface tracking in three dimensions”. In: SIAM Journal on Scientific Computing 21 (2000), pp. 2240–2256.
[34] P. M. Gresho. “Some current CFD issues relevant to the incompressible NavierStokes equations”. In: Computer Methods in Applied Mechanics and Engineering 87(1991), pp. 201–252.
[35] P. M. Gresho and R. L. Sani. “On pressure boundary conditions for the incompressible Navier-Stokes equations”. In: International Journal for Numerical Methods in Fluids 7 (1987), pp. 1111–1145.
[36] D. Guan, Y. J. Wang, E. Charlaix, and P. Tong. “Asymmetric and speed-dependentcapillary force hysteresis and relaxation of a suddenly stopped moving contactline”. In: Physical Review Letters 116 (2016), p. 066102.
[37] D. Guan, Y. J. Wang, E. Charlaix, and P. Tong. “Simultaneous observation ofasymmetric speed-dependent capillary force hysteresis and slow relaxation of asuddenly stopped moving contact line”. In: Physical Review E 94 (2016), p. 042802.
[38] R. Hu and Z. Li. “Error analysis of the immersed interface method for Stokesequations with an interface”. In: Applied Mathematics Letters 83 (2018), pp. 207–211.
[39] C. Huh and L. E. Scriven. “Hydrodynamic model of steady movement of asolid/liquid/fluid contact line”. In: Journal of Colloid and Interface Science 35 (1971),pp. 85–101.
[40] K. Ito, Z. Li, and X. Wan. “Pressure jump conditions for Stokes equations withdiscontinuous viscosity in 2D and 3D”. In: Methods and Applications of Analysis13 (2006), pp. 199–214.
[41] D. Jacqmin. “Contact-line dynamics of a diffuse fluid interface”. In: Journal ofFluid Mechanics 402 (2000), pp. 57–88.
[42] Y. J. Jiang, A. Umemura, and C. K. Law. “An experimental investigation on thecollision behaviour of hydrocarbon droplets”. In: Journal of Fluid Mechanics 234(1992), pp. 171–190.
[43] H. Johnston and J.-G. Liu. “Accurate, stable and efficient Navier–Stokes solversbased on explicit treatment of the pressure term”. In: Journal of ComputationalPhysics 199 (2004), pp. 221–259.
[44] H. Johnston and J.-G. Liu. “Finite difference schemes for incompressible flowbased on local pressure boundary conditions”. In: Journal of Computational Physics180 (2002), pp. 120–154.
[45] C. Josserand, L. Lemoyne, R. Troeger, and S. Zaleski. “Droplet impact on a drysurface: triggering the splash with a small obstacle”. In: Journal of Fluid Mechanics524 (2005), p. 47.
[46] M. Kang, R. P. Fedkiw, and X.-D. Liu. “A boundary condition capturing methodfor multiphase incompressible flow”. In: Journal of Scientific Computing 15 (2000),pp. 323–360.
[47] K. H. Karlsen, K.-A. Lie, and N. Risebro. “A fast marching method for reservoirsimulation”. In: Computational Geosciences 4 (2000), pp. 185–206.
[48] G. E. Karniadakis, M. Israeli, and S. A. Orszag. “High-order splitting methodsfor the incompressible Navier-Stokes equations”. In: Journal of ComputationalPhysics 97 (1991), pp. 414–443.
[49] Y. Kim, M.-C. Lai, and C. S. Peskin. “Numerical simulations of two-dimensionalfoam by the immersed boundary method”. In: Journal of Computational Physics229 (2010), pp. 5194–5207.
[50] J. Koplik, J. R. Banavar, and J. F. Willemsen. “Molecular dynamics of Poiseuilleflow and moving contact lines”. In: Physical Review Letters 60 (1988), p. 1282.
[51] G. Korotcenkov. Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications Volume 1: Conventional Approaches. Springer, 2013.
[52] M.-C. Lai and H.-C. Tseng. “A simple implementation of the immersed interfacemethods for Stokes flows with singular forces”. In: Computers & Fluids 37 (2008),pp. 99–106.
[53] L. Lee and R. J. LeVeque. “An immersed interface method for incompressibleNavier–Stokes equations”. In: SIAM Journal on Scientific Computing 25 (2003),pp. 832–856.
[54] D. Legendre and M. Maglio. “Comparison between numerical models for thesimulation of moving contact lines”. In: Computers & Fluids 113 (2015), pp. 2–13.
[55] S. Leung and H. Zhao. “A grid based particle method for moving interface problems”. In: Journal of Computational Physics 228 (2009), pp. 2993–3024.
[56] R. J. LeVeque and Z. Li. “Immersed interface methods for Stokes flow with elastic boundaries or surface tension”. In: SIAM Journal on Scientific Computing 18(1997), pp. 709–735.
[57] R. J. Leveque and Z. Li. “The immersed interface method for elliptic equationswith discontinuous coefficients and singular sources”. In: SIAM Journal on Numerical Analysis 31 (1994), pp. 1019–1044.
[58] B. Li. “Convergence of Dziuk’s linearly implicit parametric finite element methodfor curve shortening flow”. In: SIAM Journal on Numerical Analysis 58 (2020),pp. 2315–2333.
[59] J. Li. “Macroscopic model for head-on binary droplet collisions in a gaseousmedium”. In: Physical Review Letters 117 (2016), p. 214502.
[60] Z. Li. The Immersed Interface Method: A Numerical Approach for Partial DifferentialEquations with Interfaces. University of Washington, 1994.
[61] Z. Li. “The immersed interface method using a finite element formulation”. In:Applied Numerical Mathematics 27 (1998), pp. 253–267.
[62] Z. Li and K. Ito. The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM, 2006.
[63] Z. Li, K. Ito, and M.-C. Lai. “An augmented approach for Stokes equations witha discontinuous viscosity and singular forces”. In: Computers & Fluids 36 (2007),pp. 622–635.
[64] Z. Li and M.-C. Lai. “The immersed interface method for the Navier–Stokesequations with singular forces”. In: Journal of Computational Physics 171 (2001),pp. 822–842.
[65] Z. Li, M.-C. Lai, G. He, and H. Zhao. “An augmented method for free boundaryproblems with moving contact lines”. In: Computers & fluids 39 (2010), pp. 1033–1040.
[66] Z. Li, M.-C. Lai, X. Peng, and Z. Zhang. “A least squares augmented immersedinterface method for solving Navier–Stokes and Darcy coupling equations”. In:Computers & Fluids 167 (2018), pp. 384–399.
[67] Z. Li, T. Lin, and X. Wu. “New Cartesian grid methods for interface problems using the finite element formulation”. In: Numerische Mathematik 96 (2003), pp. 61–98.
[68] H. Liu, Y. Ju, N. Wang, G. Xi, and Y. Zhang. “Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference”.In: Physical Review E 92 (2015), p. 033306.
[69] T. Liu, B. Khoo, and K. Yeo. “Ghost fluid method for strong shock impacting onmaterial interface”. In: Journal of Computational Physics 190 (2003), pp. 651–681.
[70] S. Manservisi and R. Scardovelli. “A variational approach to the contact angledynamics of spreading droplets”. In: Computers & Fluids 38 (2009), pp. 406–424.
[71] A. Mayo. “The fast solution of Poisson’s and the biharmonic equations on irregular regions”. In: SIAM Journal on Numerical Analysis 21 (1984), pp. 285–299.
[72] H. S. H. Mohand, H. Hoang, G. Galliero, and D. Legendre. “On the use of afriction model in a Volume of Fluid solver for the simulation of dynamic contactlines”. In: Journal of Computational Physics 393 (2019), pp. 29–45.
[73] M. Muradoglu and S. Tasoglu. “A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls”. In: Computers& Fluids 39 (2010), pp. 615–625.
[74] L. Onsager. “Reciprocal relations in irreversible processes. I.” In: Physical Review37 (1931), p. 405.
[75] L. Onsager. “Reciprocal relations in irreversible processes. II.” In: Physical Review38 (1931), p. 2265.
[76] S. Osher and J. A. Sethian. “Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations”. In: Journal of ComputationalPhysics 79 (1988), pp. 12–49.
[77] C. S. Peskin. “Flow patterns around heart valves: a numerical method”. In: Journal of Computational Physics 10 (1972), pp. 252–271.
[78] C. S. Peskin. “The immersed boundary method”. In: Acta Numerica 11 (2002),pp. 479–517.
[79] P. Petrov and I. Petrov. “A combined molecular-hydrodynamic approach to wetting kinetics”. In: Langmuir 8 (1992), pp. 1762–1767.
[80] C. Pozrikidis. “Stability of sessile and pendant liquid drops”. In: Journal of Engineering Mathematics 72 (2012), pp. 1–20.
[81] T. Qian, X.-P. Wang, and P. Sheng. “A variational approach to the moving contact line hydrodynamics”. In: Journal of Fluid Mechanics 564 (2006), 333–360.
[82] T. Qian, X.-P. Wang, and P. Sheng. “Molecular scale contact line hydrodynamicsof immiscible flows”. In: Physical Review E 68 (2003), p. 016306.
[83] J. Qin and P. Gao. “Asymptotic theory of fluid entrainment in dip coating”. In:Journal of Fluid Mechanics 844 (2018), pp. 1026–1037.
[84] T. Rabczuk, J.-H. Song, X. Zhuang, and C. Anitescu. Extended Finite Element andMeshfree Methods. Academic Press, 2019.
[85] W. Ren and W. E. “Boundary conditions for the moving contact line problem”.In: Physics of Fluids 19 (2007), p. 022101.
[86] W. Ren, D. Hu, and W. E. “Continuum models for the contact line problem”. In:Physics of Fluids 22 (2010), p. 102103.
[87] M. Renardy, Y. Renardy, and J. Li. “Numerical simulation of moving contact lineproblems using a volume-of-fluid method”. In: Journal of Computational Physics171 (2001), pp. 243–263.
[88] P. D. Spelt. “A level-set approach for simulations of flows with multiple moving contact lines with hysteresis”. In: Journal of Computational physics 207 (2005),pp. 389–404.
[89] H. A. Stone, A. D. Stroock, and A. Ajdari. “Engineering flows in small devices:microfluidics toward a lab-on-a-chip”. In: Annual Review of Fluid Mechanics 36(2004), pp. 381–411.
[90] Z. Tan, D.-V. Le, K. M. Lim, and B. Khoo. “An immersed interface methodfor the incompressible Navier–Stokes equations with discontinuous viscosityacross the interface”. In: SIAM Journal on Scientific Computing 31 (2009), pp. 1798–1819.
[91] P. A. Thompson and M. O. Robbins. “Simulations of contact-line motion: slipand the dynamic contact angle”. In: Physical Review Letters 63 (1989), p. 766.
[92] W. Thomson. “Capillary attraction”. In: Nature 34 (1886), pp. 270–272.
[93] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J.Han, S. Nas, and Y.-J. Jan. “A front-tracking method for the computations ofmultiphase flow”. In: Journal of Computational Physics 169 (2001), pp. 708–759.
[94] O. Voinov. “Hydrodynamics of wetting”. In: Fluid Dynamics 11 (1976), pp. 714–721.
[95] J. D. Van der Waals. “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. In: Journal of Statistical Physics 20(1979), pp. 200–244.
[96] L. Wang, H.-b. Huang, and X.-Y. Lu. “Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method”. In: Physical Review E 87 (2013),p. 013301.
[97] Q. Wang. “Generalized onsager principle and it applications”. In: Frontiers andProgress of Current Soft Matter Research. Springer, 2021, pp. 101–132.
[98] X.-P. Wang and Y.-G. Wang. “The sharp interface limit of a phase field model formoving contact line problem”. In: Methods and Applications of Analysis 14 (2007),pp. 287–294.
[99] J.-J. Xu, Z. Li, J. Lowengrub, and H. Zhao. “A level-set method for interfacialflows with surfactant”. In: Journal of Computational Physics 212 (2006), pp. 590–616.
[100] J.-J. Xu and W. Ren. “A level-set method for two-phase flows with moving contact line and insoluble surfactant”. In: Journal of Computational Physics 263 (2014),pp. 71–90.
[101] J.-J. Xu and H.-K. Zhao. “An Eulerian formulation for solving partial differentialequations along a moving interface”. In: Journal of Scientific Computing 19 (2003),pp. 573–594.
[102] S. Xu and Z. J. Wang. “An immersed interface method for simulating the interaction of a fluid with moving boundaries”. In: Journal of Computational Physics216 (2006), pp. 454–493.
[103] X. Xu, Y. Di, and M. Doi. “Variational method for contact line problems in slidingliquids”. In: Physics of Fluids 28 (2016), p. 087101.
[104] X. Xu, Y. Zhao, and X. Wang. “Analysis for contact angle hysteresis on roughsurfaces by a phase-field model with a relaxed boundary condition”. In: SIAMJournal on Applied Mathematics 79 (2019), pp. 2551–2568.
[105] T. Young. “III. An essay on the cohesion of fluids”. In: Philosophical Transactions of the Royal Society of London (1805), pp. 65–87.
[106] P. Yue and J. Feng. “Can diffuse-interface models quantitatively describe moving contact lines?” In: The European Physical Journal Special Topics 197 (2011),pp. 37–46.
[107] Q. Zhang. “Gepup: Generic projection and unconstrained PPE for fourth-ordersolutions of the incompressible Navier–Stokes equations with no-slip boundaryconditions”. In: Journal of Scientific Computing 67 (2016), pp. 1134–1180.
[108] Q. Zhang. “On a family of unsplit advection algorithms for volume-of-fluidmethods”. In: SIAM Journal on Numerical Analysis 51 (2013), pp. 2822–2850.
[109] Q. Zhang and A. Fogelson. “MARS: an analytic framework of interface tracking via mapping and adjusting regular semialgebraic sets”. In: SIAM Journal onNumerical Analysis 54 (2016), pp. 530–560.
[110] Z. Zhang, S. Xu, and W. Ren. “Derivation of a continuum model and the energylaw for moving contact lines with insoluble surfactants”. In: Physics of Fluids 26(2014), p. 062103.
[111] Z. Zhang and X. Xu. “Effective boundary conditions for dynamic contact anglehysteresis on chemically inhomogeneous surfaces”. In: Journal of Fluid Mechanics935 (2022).
[112] Q. Zhao, W. Jiang, and W. Bao. “A parametric finite element method for solidstate dewetting problems in three dimensions”. In: SIAM Journal on ScientificComputing 42 (2020), B327–B352.
[113] Q. Zhao and W. Ren. “An energy-stable finite element method for the simulation of moving contact lines in two-phase flows”. In: Journal of Computational Physics 417 (2020), p. 109582.
修改评论