中文版 | English
题名

GROWTH AND PASSIVATION OF HALIDE PEROVSKITE

姓名
姓名拼音
XIU Jingwei
学号
11856015
学位类型
博士
学位专业
Chemistry
导师
何祝兵
导师单位
材料科学与工程系
外机构导师
Peter Raymond Slater
外机构导师单位
伯明翰大学
论文答辩日期
2022-10-17
论文提交日期
2022-11-29
学位授予单位
伯明翰大学
学位授予地点
英国
摘要

The all-inorganic halide perovskite (CsPbI3) holds promise for photovoltaic applications but suffers from a detrimental phase transformation to a non-perovskite phase δ-CsPbI3 at low-temperature. The synthesis and stabilization routes to this and other all-inorganic halide perovskites are still not ideal, requiring uneconomical elimination of humidity, toxic solvent or high-temperature quenching. The all-solid-state synthesis method is a kind of green method to avoid the use of expensive and hazardous solvents. We have studied the influence of inorganic element doping and find that, on the one hand, the incorporation of other metal ions such as Bi3+ and Mn2+ makes little contribution to the stabilization of CsPbI3; on the other hand, these ions seems to aid the formation of yellow phase at lower temperature and accelerate the decomposition of yellow phase into CsI and PbO at high temperature. Br- doping is able to stabilize CsPbI3 in air only for a few minutes to an hour, which lead to some observation of cubic phase in the PXRD pattern. Interestingly, a cubic phase dominant black powder can be obtained by the synergic contribution of Br- and MA+/FA+ cations. We also studied the synthesis of CsPbI3 in air atmosphere at room temperature by solvent method. Water/moisture is commonly meticulously avoided due the fact that it can accelerate the detrimental degradation of the perovskite. In our work, we used an alternative approach of engineering an in situ degradation process to form a dual-functional PbI(OH) protective covering and succeeded in performing the first room-temperature synthesis of γ-CsPbI3 under ambient humidity. The vastly improved stability benefits from both lattice anchoring and physical coverage of γ-CsPbI3 by an ultra-thin PbI(OH) layer. The resultant γ-CsPbI3 isstable for more than 2 months under ambient conditions (25 oC, RH 30 - 60%). Anti-solvent assistanted crystallization (ASAC) is one the most commonly used methods for the deposition of high-quality perovskite solar cells, where anti-solvents are working to modulate the nucleation process of perovskite films by removing the host solvents, such as N,N-Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), γ-butyrrolactone (GBL). Their toxicity become a concern during the commercialization process of perovskite solar cells. Various green anti-solvents have appeared in recent years, aiming to reduce the hazardouspollution to human and environment during large-scale industrial production. However, limited green solvents, such acetic ether, anisole and so on, are proven to be efficient to reduce the dependence to the widely used toxic chlorobenzene (CB) and toluene (Tol). One of the most essential reasons is that the green anti-solvent couldn’t satisfy the strict requirement of the self-nuclei process in high-quality perovskite films. To overcome this obstacle andestablish more choices for green anti-solvents, we reduce the dependence of perovskite films to self-nuclei process, by adding perovskite CsPbI3 NCs as artificial seeds. When CsPbI3 NCs are added along with the alkane anti-solvents, the NCs could compensate the self-nuclei deficit and result in a high crystalline and dense film for high-efficiency.

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2022-12
参考文献列表

1. A. K. Jena, A. Kulkarni and T. Miyasaka, Chem. Rev., 2019, 119, 3036-3103.
2. R. J. Sutton, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, F. Giustinoand H. J. Snaith, ACS Energy Lett., 2018, 3, 1787-1794.
3. Y. Fu, Adv. Mater., 2022, 34, 2108556.
4. A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J. M. Jancu, Y. Bonnassieux, C. Katan, C. C. Stoumpos, M. G. Kanatzidis and J. Even, AcsNano, 2018, 12, 3477-3486.
5. Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik and G. D. Scholes, Adv. Mater., 2016, 28, 566-573.
6. Z. Qiu, A. Mei, Y. Hu, Y. Rong and H. Han, Appl. Phys. Lett., 2021, 119, 250503.
7. Y. Jiang, E. J. Juarez-Perez, Q. Ge, S. Wang, M. R. Leyden, L. K. Ono, S. R. Raga, J. Hu and Y. Qi, Mater. Horiz., 2016, 3, 548-555.
8. W. Tian, H. Zhou and L. Li, Small, 2017, 13, 1702107.
9. G. Tang, P. You, Q. Tai, A. Yang, J. Cao, F. Zheng, Z. Zhou, J. Zhao, P. K. L. Chan and F. Yan, Adv. Mater., 2019, 31, 1807689.
10. N.-G. Park, Mater. Today, 2015, 18, 65-72.
11. B. Tang, Y. Hu, H. Dong, L. Sun, B. Zhao, X. Jiang and L. Zhang, Angew. Chem., 2019, 131, 16280-16286.
12. D. Wei, F. Ma, R. Wang, S. Dou, P. Cui, H. Huang, J. Ji, E. Jia, X. Jia and S. Sajid, Adv. Mater., 2018, 30, 1707583.
13. W. Kim, S. K. Kim, S. Jeon, J. Ahn, B. K. Jung, S. Y. Lee, C. Shin, T. Y. Seong, S. Jeong and H. S. Jang, Adv. Funct. Mater., 2022, 2111409.113
14. A. Ray, B. Martín-García, A. Moliterni, N. Casati, K. M. Boopathi, D. Spirito, L. Goldoni, M. Prato, C. Giacobbe and C. Giannini, Adv. Mater., 2022, 2106160.
15. J. Pan, Z. Zhao, F. Fang, L. Wang, G. Wang, C. Liu, Q. Huang, J. Sun, Y. Huang and L. Mao, Adv Opt. Mater., 2022, 2102569.
16. J. Wei, L. Tao, L. Li, M. Yan, C. Wang, W. Sun, D. Yang and Y. Fang, Adv Opt. Mater., 2022, 10, 2102320.
17. P. Jia, L. Qin, D. Zhao, Y. Tang, B. Song, J. Guo, X. Li, L. Li, Q. Cui and Y. Hu, Adv. Funct. Mater., 2021, 31, 2107125.
18. Q. Zhou, L. Liang, J. Hu, B. Cao, L. Yang, T. Wu, X. Li, B. Zhang and P. Gao, Adv. Energy Mater., 2019, 9, 1802595.
19. B. W. Boote, H. P. Andaraarachchi, B. A. Rosales, R. Blome-Fernández, F. Zhu, M. D. Reichert, K. Santra, J. Li, J. W. Petrich, J. Vela and E. A. Smith, ChemSusChem, 2019, 20, 2647-2656.
20. A. R. Chakhmouradian and P. M. Woodward, Phys. Chem. Minerals, 2014, 41, 387-391.
21. L. Hu, W. Zhao, W. Duan, G. Chen, B. Fan and X. Zhang, Micromachines, 2022, 13, 457.
22. S. Shukla, S. Shukla, L. J. Haur, S. S. Dintakurti, G. Han, A. Priyadarshi, T. Baikie, S. G. Mhaisalkar and N. Mathews, ChemSusChem, 2017, 10, 3804-3809.
23. X. Du, R. Qiu, T. Zou, X. Chen, H. Chen and H. Zhou, Adv Mater. Interfaces, 2019, 6, 1900413.
24. Q. Chen, J. Luo, R. He, H. Lai, S. Ren, Y. Jiang, Z. Wan, W. Wang, X. Hao andY. Wang, Adv. Energy Mater., 2021, 11, 2101045.114
25. W. F. Yang, F. Igbari, Y. H. Lou, Z. K. Wang and L. S. Liao, Adv. Energy Mater., 2020, 10, 1902584.
26. S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan and J. Zhu, Adv. Mater., 2020, 32, 1907392.
27. C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M. M. Junda, C. Wang, C. S. Jiang and M. Al. Jassim, Adv. Energy Mater., 2019, 9, 1803135. 28. T. Mahmoudi, W. Y. Rho, M. Kohan, Y. H. Im, S. Mathur and Y.-B. Hahn, NanoEnergy, 2021, 90, 106495.
29. E. Mosconi, B. Merabet, D. Meggiolaro, A. Zaoui and F. De Angelis, The J. Phys. Chem. C, 2018, 122, 14107-14112.
30. R. Ali, G. J. Hou, Z. G. Zhu, Q.-B. Yan, Q. R. Zheng and G. Su, J. Mater. Chem. A, 2018, 6, 9220-9227. 31. H. Zhang, H. Wang, S. T. Williams, D. Xiong, W. Zhang, C. C. Chueh, W. Chenand A. K. Y. Jen, Adv. Mater., 2017, 29, 1606608. 32. H. Shankar, A. Jha and P. Kar, Mater. Adv, 2022, 3, 658-664. 33. Z. Chen, H. He, Z. Wen, Z. Cui, S. Mei, D. Yang, X. Wei, W. Zhang, F. Xie andB. Yang, Mater. Sci. Eng. B, 2021, 273, 115426. 34. B. Su, G. Zhou, J. Huang, E. Song, A. Nag and Z. Xia, Laser & Photonics Rev., 2021, 15, 2000334. 35. S. Zhang, M.-C. Tang, N. V. Nguyen, T. D. Anthopoulos and C. A. Hacker, ACSAppl. Electron. Mater., 2021, 3, 2277-2285. 36. Y. Li, D. Song, J. Meng, J. Dong, Y. Lu, X. Huo, A. Maqsood, Y. Song, S. Zhaoand B. Qiao, J. Mater. Sci, 2020, 55, 9787-9794. 37. D. Wang, D. Wu, D. Dong, W. Chen, J. Hao, J. Qin, B. Xu, K. Wang and X. Sun, Nanoscale, 2016, 8, 11565-11570.11538. S. Shi, Y. Li, X. Li and H. Wang, Mater.Horiz., 2015, 2, 378. 39. Q. A. Akkerman and L. Manna, ACS Energy Lett., 2020, 5, 604-610. 40. H. Dong, C. Zhang, X. Liu, J. Yao and Y. S. Zhao, Chem. Soc. Rev., 2020, 49, 951-982. 41. W. Li, Z. Wang, F. Deschler, S. Gao, R. H. Friend and A. K. Cheetham, NatureRev. Mater., 2017, 2, 16099. 42. Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X. Y. Zhu and S. Jin, Nature Rev. Mater., 2019, 4, 169-188. 43. B. Wang, N. Novendra and A. Navrotsky, J. Am. Chem. Soc., 2019, 141, 14501-14504. 44. Y. Wang, M. I. Dar, L. K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang and X. Gao, Science, 2019, 365, 591-595. 45. V. M. Goldschmidt, Naturwissenschaften, 1926, 14, 477-485. 46. W. S. Subhani, K. Wang, M. Du and S. F. Liu, Nano energy, 2019, 61, 165-172. 47. Y. Fu, M. P. Hautzinger, Z. Luo, F. Wang, D. Pan, M. M. Aristov, I. A. Guzei, A. Pan, X. Zhu and S. Jin, ACS central sci., 2019, 5, 1377-1386. 48. H. Meyers and H. Myers, Introductory solid state physics, CRC press, 1997. 49. D. W. Snoke, Solid state physics: Essential concepts, Cambridge UniversityPress, 2020. 50. J. D. Patterson and B. C. Bailey, Solid-state physics: introduction to the theory, Springer Science & Business Media, 2007. 51. T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes and D. Cahen, Nat. Rev. Mater., 2016, 1, 1-16. 52. H. S. Jung and N. G. Park, Small, 2015, 11, 10-25.11653. W. Gao, X. Gao, T. A. Abtew, Y. Y. Sun, S. Zhang and P. Zhang, Phys. Rev. B, 2016, 93, 085202. 54. T. Umebayashi, K. Asai, T. Kondo and A. Nakao, Phys. Rev. B, 2003, 67, 155405. 55. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel and F. De Angelis, Nano Lett., 2014, 14, 3608-3616. 56. W. Ahmad, J. Khan, G. Niu and J. Tang, Solar RRL, 2017, 1, 1700048. 57. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar and T. C. Sum, Nat. Mater., 2014, 13, 476-480. 58. P. T. Lai, H. C. Lin, Y. T. Chuang, C. Y. Chen, W. K. Cheng, G. -H. Tan, B. W. Hsu, L. Yang, S. C. Lou and L. J. Chien, ACS Appl. Mater. & Interfaces, 2022. 59. J. Wu, L. Wang, A. Feng, S. Yang, N. Li, X. Jiang, N. Liu, S. Xie, X. Guo and Y. Fang, Adv. Funct. Mater., 2022, 32, 2109149. 60. S. Basak, O. Bar On and J. Scheuer, Opt. Mater. Exp., 2022, 12, 375-382. 61. Y. Wu, B. Huang, Z. Meng, S. Zhang and S. Wu, Chem. Eng. J., 2022, 432, 134409. 62. D. Zhang, Q. Zhang, B. Ren, Y. Zhu, M. Abdellah, Y. Fu, B. Cao, C. Wang, L. Gu and Y. Ding, Nature Photonics, 2022, 16, 284-290. 63. E. Smecca, Y. Numata, I. Deretzis, G. Pellegrino, S. Boninelli, T. Miyasaka, A. La Magna and A. Alberti, PCCP, 2016, 18, 13413-13422. 64. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, Science, 2014, 7, 982-988. 65. J. Carrillo, A. Guerrero, S. Rahimnejad, O. Almora, I. Zarazua, E. Mas-Marza, J. Bisquert and G. Garcia-Belmonte, Adv. Energy Mater., 2016, 6, 1502246.11766. F. X. Xie, D. Zhang, H. Su, X. Ren, K. S. Wong, M. Grätzel and W. C. Choy, Acs Nano, 2015, 9, 639-646. 67. J. Gong, P. Guo, S. E. Benjamin, P. G. Van Patten, R. D. Schaller and T. Xu, J. Eng. Chem, 2018, 27, 1017-1039. 68. Z. Yao, W. Zhao and S. F. Liu, J. Mater. Chem. A, 2021, 9, 11124-11144. 69. Z. Gu, Z. Huang, C. Li, M. Li and Y. Song, Sci. Adv., 2018, 4, eaat2390. 70. L. Meng, Z. Wei, T. Zuo and P. Gao, Nano Energy, 2020, 75, 104866. 71. D. B. Straus, S. Guo, A. M. Abeykoon and R. J. Cava, Adv. Mater., 2020, 32, 2001069. 72. Z. Xiao, W. Meng, J. Wang and Y. Yan, ChemSusChem, 2016, 9, 2628-2633. 73. Zhao, B. Zhao, S. F. Jin, S. Huang, N. Liu, J. Y. Ma, D. J. Xue, Han, Q. Han, J. Ding, Y. Feng, J. S. Hu, J. Am. Chem. Soc. 2018, 140 (37), 11716-11725. 74. R. J. Sutton, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, F. Giustinoand H. J. Snaith, ACS Energy Lett., 2018, 3, 1787-1794. 75. Q. Ye, F. Ma, Y. Zhao, S. Yu, Z. Chu, P. Gao, X. Zhang and J. You, Small, 2020, 16, 2005246. 76. M. Li, X. Zhang, P. Wang and P. Yang, The J. Phys. Chem. C, 2021, 125, 7109-7118. 77. J. K. Sun, S. Huang, X. Z. Liu, Q. Xu, Q. H. Zhang, W. J. Jiang, D. J. Xue, J. C. Xu, J. Y. Ma and J. Ding, J. Am. CHEM. 2018, 140, 11705-11715. 78. R. Chen, Y. Hui, B. Wu, Y. Wang, X. Huang, Z. Xu, P. Ruan, W. Zhang, F. Cheng and W. Zhang, J. Mater. Chem. Soc., 2020, 8, 9597-9606. 79. E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard and J. M. Luther, Sci. Adv., 2017, 3, eaao4204.11880. G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli and H. J. Snaith, J. Mater. Chem. A, 2015, 3, 19688-19695. 81. W. Ke, I. Spanopoulos, C. C. Stoumpos and M. G. Kanatzidis, Nat. Commun., 2018, 9, 4785. 82. J. Navas, A. Sánchez-Coronilla, J. J. Gallardo, N. Cruz Hernández, J. C. Piñero, R. Alcántara, C. Fernández-Lorenzo, D. M. De los Santos, T. Aguilarand J. Martín-Calleja, Nanoscale, 2015, 7, 6216-6229. 83. J. K. Nam, M. S. Jung, S. U. Chai, Y. J. Choi, D. Kim and J. H. Park, J. Phys. Chem. Lett., 2017, 8, 2936-2940. 84. J. P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. J. Jacobsson, M. Grätzel, A. J. E. Hagfeldt and E. Science, 2017, 10, 710-727. 85. L. Meng, J. You, T. F. Guo and Y. Yang, Acc. Chem. Res., 2016, 49, 155-165. 86. C. Zuo, H. J. Bolink, H. Han, J. Huang, D. Cahen and L. Ding, Adv. Sci., 2016, 3, 1500324. 87. H. S. Kim and N. G. Park, J. Phys. Chem. Lett., 2014, 5, 2927-2934. 88. P. Ru, E. Bi, Y. Zhang, Y. Wang, W. Kong, Y. Sha, W. Tang, P. Zhang, Y. Wu, W. Chen, X. Yang, H. Chen and L. Han, Adv. Energy Mater., 2020, 10, 1903487. 89. W. Chen, L. Xu, X. Feng, J. Jie and Z. He, Adv. Mater., 2017, 29, 1603923. 90. N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddinand M. Grätzel, Science, 2017, 358, 768-771. 91. Y. Xia and S. Dai, J. Mater. Sci-Mater. El., 2021, 32, 12746-12757. 92. Y. Kim, E. H. Jung, G. Kim, D. Kim, B. J. Kim and J. Seo, Adv. Energy Mater., 2018, 8, 1801668. 93. W. H. Nguyen, C. D. Bailie, E. L. Unger and M. D. McGehee, J. Am. Chem. Soc., 2014, 136, 10996-11001.11994. Q. Jiang, X. Zhang and J. You, Small, 2018, 14, 1801154. 95. R. Long, W. H. Fang and O. V. Prezhdo, The J. Phys. Chem. C, 2017, 121, 3797-3806. 96. C. Quarti, F. De Angelis and D. Beljonne, Chem. Mater., 2017, 29, 958-968. 97. C. H. Chiang and C. G. Wu, Nat. Photonics, 2016, 10, 196-200. 98. Y. Zhou, J. Chen, O. M. Bakr and H. T. Sun, Chem. Mater., 2018, 30, 6589-6613. 99. A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun and L. Sinatra, J. Phys. Chem Lett., 2016, 7, 295-301. 100. Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao, T. Qiu and S. Zhang, ACS Energy Lett., 2017, 2, 2219-2227. 101. C. Liu, W. Li, H. Li, H. Wang, C. Zhang, Y. Yang, X. Gao, Q. Xue, H. L. Yip andJ. Fan, Adv. Energy Mater., 2019, 9, 1803572. 102. Q. A. Akkerman, D. Meggiolaro, Z. Dang, F. De Angelis and L. Manna, ACSEnergy Lett., 2017, 2, 2183-2186. 103. W. van der Stam, J. J. Geuchies, T. Altantzis, K. H. W. van den Bos, J. D. Meeldijk, S. Van Aert, S. Bals, D. Vanmaekelbergh and C. de Mello Donega, J. Am. Chem. Soc., 2017, 139, 4087-4097. 104. G. Pan, X. Bai, D. Yang, X. Chen, P. Jing, S. Qu, L. Zhang, D. Zhou, J. Zhu andW. Xu, Nano Lett., 2017, 17, 8005-8011. 105. A. K. Jena, A. Kulkarni, Y. Sanehira, M. Ikegami and T. Miyasaka, Chem. Mater., 2018, 30, 6668-6674. 106. S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu and H. Chen, Nanoscale, 2018, 10, 9996-10004.107. L. Dimesso, M. Wussler, T. Mayer, E. Mankel and W. Jaegermann, AIMS Mater. Sci., 2016, 3, 737-755. 108. C. F. J. Lau, M. Zhang, X. Deng, J. Zheng, J. Bing, Q. Ma, J. Kim, L. Hu, M. A. Green, S. Huang and A. Ho-Baillie, ACS Energy Lett., 2017, 2, 2319-2325. 109. T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Gratzel and Y. Zhao, Sci. Adv., 2017, 3, e1700841. 110. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. J. N. Grätzel, Nature, 2013, 499, 316. 111. H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. De Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang and Y. J. S. Zhao, Science, 2017, 355, 722-726. 112. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim and J. H. J. S. Noh, Science, 2017, 356, 1376-1379. 113. J. A. Christians, P. A. Miranda Herrera and P. V. Kamat, J. Am. Chem. Soc., 2015, 137, 1530-1538. 114. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca and E. Mosconi, Adv. Energy Mater., 2015, 5, 1500477. 115. Y. Wang, T. Zhang, M. Kan and S. Zhao, 2018, J. Am. Chem. Soc., 140, 12345-12348. 116. J. A. Steele, H. Jin, I. Dovgaliuk, R. F. Berger, T. Braeckevelt, H. Yuan, C. Martin, E. Solano, K. Lejaeghere and S. M. Rogge, Science, 2019, 365, 679-684. 117. B. Zhao, S. F. Jin, S. Huang, N. Liu, J. Y. Ma, D. J. Xue, Q. Han, J. Ding, Q. Q. Ge, Y. Feng and J. S. Hu, J. Am. Chem. Soc., 2018, 140, 11716-11725. 120118. J. Zhang, D. Bai, Z. Jin, H. Bian, K. Wang, J. Sun, Q. Wang and S. Liu, Adv. Energy Mater., 2018, 8, 1703246. 119. H. Zhao, J. Xu, S. Zhou, Z. Li, B. Zhang, X. Xia, X. Liu, S. Dai and J. Yao, Adv. Funct. Mater., 2019, 1808986. 120. P. Becker, J. A. Márquez, J. Just, A. Al-Ashouri, C. Hages, H. Hempel, M. Jošt, S. Albrecht, R. Frahm and T. Unold, Adv. Energy Mater., 2019, 9, 1900555. 121. E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard and J. M. Luther, Sci. Adv., 2017, 3, eaao4204. 122. B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang and L. Yin, Nat. Commun., 2018, 9, 1076. 123. D. B. Straus, S. Guo and R. J. Cava, J. Am. Chem. Soc., 2019, 9b06055. 124. G. Yuan, C. Ritchie, M. Ritter, S. Murphy, D. E. Gomez and P. Mulvaney, J. Phys. Chem. C, 2017, 122, 13407-13415. 125. J. Dennis, H. Henisch and P. Cherin, J. Electrochem. Soc., 1965, 112, 1240-1241. 126. Y. Chen, Y. Lei, Y. Li, Y. Yu, J. Cai, M. H. Chiu, R. Rao, Y. Gu, C. Wang and W. Choi, Nature, 2020, 577, 209-215. 127. Y. Chen, T. Shi, P. Liu, W. Xie, K. Chen, X. Xu, L. Shui, C. Shang, Z. Chen, H.-L. Yip, G. Zhou and X. Wang, J. Mater. Chem. A, 2019, 7, 20201-20207. 128. Z. Li, B. Li, X. Wu, S. A. Sheppard, S. Zhang, D. Gao, N. J. Long and Z. Zhu, Science, 2022, 376, 416-420. 129. S. Tan, T. Huang, I. Yavuz, R. Wang, T. W. Yoon, M. Xu, Q. Xing, K. Park, D. K. Lee, C. H. Chen, R. Zheng, T. Yoon, Y. Zhao, H. C. Wang, D. Meng, J. Xue, Y. J. Song, X. Pan, N. G. Park, J. W. Lee and Y. Yang, Nature, 2022, 605, 268-273. 121130. M. Zhang, Z. Wang, B. Zhou, X. Jia, Q. Ma, N. Yuan, X. Zheng, J. Ding and W. H. Zhang, Solar RRL, 2018, 2, 1700213. 131. M. T. Hoang, F. Ünlü, W. Martens, J. Bell, S. Mathur and H. Wang, GreenChem., 2021, 23, 5302-5336. 132. T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou, X. Yu, T. Qin, J. Shi, S. Wang, S. Li, Z. Ku, Y. Peng, F. Huang, Q. Meng, Y. B. Cheng and J. Zhong, Adv. Energy Mater., 2017, 7, 1700576. 133. M. Wang, Q. Fu, L. Yan, J. Huang, Q. Ma, M. Humayun, W. Pi, X. Chen, Z. Zheng and W. Luo, Chem. Eng. J., 2020, 387, 123966. 134. S. Ghosh, S. Mishra and T. Singh, Adv. Mater. Interfaces, 2020, 7, 2000950. 135. J. Sun, F. Li, J. Yuan and W. Ma, Small Methods, 2021, 5, 2100046. 136. H. Chen, Z. Wei, H. He, X. Zheng, K. S. Wong and S. Yang, Adv. Energy Mater., 2016, 6, 1502087. 137. H. B. Lee, M. K. Jeon, N. Kumar, B. Tyagi and J. W. Kang, Adv. Funct. Mater., 2019, 29, 1903213. 138. N. Lin, J. Qiao, H. Dong, F. Ma and L. Wang, J. Mater. Chem. A, 2015, 3, 22839-22845. 139. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, Science, 2016, 354, 92-95. 140. Q. Hu, W. Chen, W. Yang, Y. Li, Y. Zhou, B. W. Larson, J. C. Johnson, Y. H. Lu, W. Zhong and J. Xu, Joule, 2020, 4, 1575-1593. 141. A. Jana, A. Meena, S. A. Patil, Y. Jo, S. Cho, Y. Park, V. G. Sree, H. Kim, H. Imand R. A. Taylor, Prog. Mater. Sci., 2022, 129, 100975.122142. Z. Yang, W. Zhang, S. Wu, H. Zhu, Z. Liu, Z. Liu, Z. Jiang, R. Chen, J. Zhou, Q. Lu, Z. Xiao, L. Shi, H. Chen, L. K. Ono, S. Zhang, Y. Zhang, Y. Qi, L. Han andW. Chen, Sci. Adv., 2021, 7, eabg3749. 143. C. Chen, Z. W. Zhou, Y. Jiang, Y. C. Feng, Y. Fang, J. Y. Liu, M. J. Chen, J. M. Liu, J. W. Gao, and S. P. Feng, ACS Appl. Mater. Interfaces, 2022, 14, 17348−17357. 144. W. Zhang, Y. Li, X. Liu, D. Tang, X. Li and X. Yuan, Chem. Eng. J., 2020, 379, 122298. 145. Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan, O. Voznyy, E. Yassitepe, A. Buin, S. Hoogland and E. H. Sargent, Nature, 2015, 523, 324-328. 146. Y. Zhao, H. Tan, H. Yuan, Z. Yang, J. Z. Fan, J. Kim, O. Voznyy, X. Gong, L. N. Quan, C. S. Tan, J. Hofkens, D. Yu, Q. Zhao and E. H. Sargent, NatureCommun., 2018, 9, 1607. 147. S. S. Li, C. H. Chang, Y. C. Wang, C. W. Lin, D. Y. Wang, J. C. Lin, C. C. Chen, H. S. Sheu, H. C. Chia, W. R. Wu, U. S. Jeng, C. T. Liang, R. Sankar, F. C. Chou and C. W. Chen, Enerr. & Environ. Sci., 2016, 9, 1282-1289. 148. J. W. Gibbs, Am. J. Sci., 1878, s3-16, 441-458. 149. W. Yang, R. Su, D. Luo, Q. Hu, F. Zhang, Z. Xu, Z. Wang, J. Tang, Z. Lv, X. Yang, Y. Tu, W. Zhang, H. Zhong, Q. Gong, T. P. Russell and R. Zhu, NanoEnergy, 2020, 67, 104189. 150. D. Zhang, Y. Zhu, L. Liu, X. Ying, C.-E. Hsiung, R. Sougrat, K. Li and Y. Han, Science, 2018, 359, 675-679. 151. Y. Li, W. Zhou, Y. Li, W. Huang, Z. Zhang, G. Chen, H. Wang, G.-H. Wu, N. Rolston, R. Vila, W. Chiu and Y. Cui, Joule, 2019, 3, 2854-2866. 123152. M. Zhang, S. Dai, S. Chandrabose, K. Chen, K. Liu, M. Qin, X. Lu, J. M. Hodgkiss, H. Zhou and X. Zhan, J. Am. Chem. Soc., 2018, 140, 14938-14944. 153. D. Li, W. Kong, H. Zhang, D. Wang, W. Li, C. Liu, H. Chen, W. Song, F. Gao, A. Amini, B. Xu, S. Li and C. Cheng, ACS Appl. Mater. & Interfaces, 2020, 12, 20103-20109. 154. S. Jeong, S. Seo, H. Yang, H. Park, S. Shin, H. Ahn, D. Lee, J. H. Park, N. G. Park and H. Shin, Adv. Energy Mater., 2021, 11, 2102236.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/501184
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Xiu JW. GROWTH AND PASSIVATION OF HALIDE PEROVSKITE[D]. 英国. 伯明翰大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11856015-修京伟 -材料科学与(9625KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[修京伟]的文章
百度学术
百度学术中相似的文章
[修京伟]的文章
必应学术
必应学术中相似的文章
[修京伟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。