题名 | Missing Road Condition Imputation Using a Multi-View Heterogeneous Graph Network From GPS Trajectory |
作者 | |
通讯作者 | Fan, Zipei |
发表日期 | 2023-02-01
|
DOI | |
发表期刊 | |
ISSN | 1524-9050
|
EISSN | 1558-0016
|
卷号 | PP期号:99页码:1-15 |
摘要 | How to generate road conditions from urban GPS trajectory is an important problem in transportation systems. However, this computation process usually suffers from serious missing value problem due to the observation uncertainty or limited reports from crowdsourcing systems. Conventional tensor factorization approaches learn the spatio-temporal dependencies in a collaborative filtering way, which ignores the complex road network structure information and temporal heterogeneity. In this study, we propose a multi-view model with multiple aspects of prior knowledge to impute traffic state computed from a real-world trajectory dataset. More specifically, in the spatial view, rather than focusing on a specific type of road segment, we take the heterogeneity of road network into consideration and model the multiple relations of adjacent road segments. Meanwhile, the temporal pattern is also viewed as a heterogeneous graphical structure that discriminates the weekly/hourly adjacency in the temporal view. Finally, we fuse the above spatio-temporal features to provide a robust estimation under different sparse conditions. Intensive experiments on two types of missing scenarios (i.e., random and non-random) demonstrate that the proposed imputation method outperforms all the other state-of-the-art approaches. In addition, our model represents interpretable patterns for spatio-temporal graph analysis. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Japan Society for the Promotion of Science (JSPS)[22H03573]
|
WOS研究方向 | Engineering
; Transportation
|
WOS类目 | Engineering, Civil
; Engineering, Electrical & Electronic
; Transportation Science & Technology
|
WOS记录号 | WOS:000936247300001
|
出版者 | |
EI入藏号 | 20231013684662
|
EI主题词 | Factorization
; Global positioning system
; Job analysis
; Motor transportation
; Roads and streets
; Taxicabs
; Tensors
; Urban transportation
|
EI分类号 | Roads and Streets:406.2
; Highway Transportation:432
; Railroad Transportation:433
; Automobiles:662.1
; Mathematics:921
; Algebra:921.1
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10046397 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/501395 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa, Chiba 2778561, Japan 2.Southern Univ Sci & Technol, Dept Comp Sci, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 |
Zhang, Zhiwen,Wang, Hongjun,Fan, Zipei,et al. Missing Road Condition Imputation Using a Multi-View Heterogeneous Graph Network From GPS Trajectory[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2023,PP(99):1-15.
|
APA |
Zhang, Zhiwen,Wang, Hongjun,Fan, Zipei,Song, Xuan,&Shibasaki, Ryosuke.(2023).Missing Road Condition Imputation Using a Multi-View Heterogeneous Graph Network From GPS Trajectory.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,PP(99),1-15.
|
MLA |
Zhang, Zhiwen,et al."Missing Road Condition Imputation Using a Multi-View Heterogeneous Graph Network From GPS Trajectory".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS PP.99(2023):1-15.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论