中文版 | English
题名

Output feedback Q-learning for discrete-time finite-horizon zero-sum games with application to the H-? control

作者
通讯作者Cai, Qianqian
发表日期
2023-04-07
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号529页码:48-55
摘要
In this paper, we present a Q-learning framework for solving finite-horizon zero-sum game problems involving the H. control of linear system without knowing the dynamics. Research in the past mainly focused on solving problems in infinite horizon with completely measurable state. However, in the prac-tical engineering, the system state is not always directly accessible, and it is difficult to solve the time-varying Riccati equation associated with the finite-horizon setting directly either. The main contribution of the proposed model-free algorithm is to determine the optimal output feedback policies without mea-surement state in finite-horizon setting. To achieve this goal, we first describe the Q-function caused by finite-horizon problems in the context of state feedback, then we parameterize the Q-functions as input- output vectors functions. Finally, the numerical examples on aircraft dynamics demonstrate the algo-rithm's efficiency. (c) 2023 Published by Elsevier B.V.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Grants of National Natural Science Foundation of China["U21A20476","U1911401","U22A20221","62273100","62073090"] ; Guang-dong Basic and Applied Basic Research Foundation["2021A1515012554","2020A1515011505"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000935337000001
出版者
EI入藏号
20231113707129
EI主题词
Discrete time control systems ; Game theory ; Linear systems ; Reinforcement learning ; State feedback
EI分类号
Artificial Intelligence:723.4 ; Control Systems:731.1 ; Calculus:921.2 ; Probability Theory:922.1 ; Systems Science:961
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85149757845
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/501408
专题工学院_机械与能源工程系
作者单位
1.Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
2.Guangdong Univ Technol, Guangdong Prov Key Lab Intelligent Decis & Coopera, Guangzhou 510006, Guangdong, Peoples R China
3.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Liu, Mingxiang,Cai, Qianqian,Li, Dandan,et al. Output feedback Q-learning for discrete-time finite-horizon zero-sum games with application to the H-? control[J]. NEUROCOMPUTING,2023,529:48-55.
APA
Liu, Mingxiang,Cai, Qianqian,Li, Dandan,Meng, Wei,&Fu, Minyue.(2023).Output feedback Q-learning for discrete-time finite-horizon zero-sum games with application to the H-? control.NEUROCOMPUTING,529,48-55.
MLA
Liu, Mingxiang,et al."Output feedback Q-learning for discrete-time finite-horizon zero-sum games with application to the H-? control".NEUROCOMPUTING 529(2023):48-55.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Mingxiang]的文章
[Cai, Qianqian]的文章
[Li, Dandan]的文章
百度学术
百度学术中相似的文章
[Liu, Mingxiang]的文章
[Cai, Qianqian]的文章
[Li, Dandan]的文章
必应学术
必应学术中相似的文章
[Liu, Mingxiang]的文章
[Cai, Qianqian]的文章
[Li, Dandan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。