题名 | Output feedback Q-learning for discrete-time finite-horizon zero-sum games with application to the H-? control |
作者 | |
通讯作者 | Cai, Qianqian |
发表日期 | 2023-04-07
|
DOI | |
发表期刊 | |
ISSN | 0925-2312
|
EISSN | 1872-8286
|
卷号 | 529页码:48-55 |
摘要 | In this paper, we present a Q-learning framework for solving finite-horizon zero-sum game problems involving the H. control of linear system without knowing the dynamics. Research in the past mainly focused on solving problems in infinite horizon with completely measurable state. However, in the prac-tical engineering, the system state is not always directly accessible, and it is difficult to solve the time-varying Riccati equation associated with the finite-horizon setting directly either. The main contribution of the proposed model-free algorithm is to determine the optimal output feedback policies without mea-surement state in finite-horizon setting. To achieve this goal, we first describe the Q-function caused by finite-horizon problems in the context of state feedback, then we parameterize the Q-functions as input- output vectors functions. Finally, the numerical examples on aircraft dynamics demonstrate the algo-rithm's efficiency. (c) 2023 Published by Elsevier B.V. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Grants of National Natural Science Foundation of China["U21A20476","U1911401","U22A20221","62273100","62073090"]
; Guang-dong Basic and Applied Basic Research Foundation["2021A1515012554","2020A1515011505"]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000935337000001
|
出版者 | |
EI入藏号 | 20231113707129
|
EI主题词 | Discrete time control systems
; Game theory
; Linear systems
; Reinforcement learning
; State feedback
|
EI分类号 | Artificial Intelligence:723.4
; Control Systems:731.1
; Calculus:921.2
; Probability Theory:922.1
; Systems Science:961
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85149757845
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/501408 |
专题 | 工学院_机械与能源工程系 |
作者单位 | 1.Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China 2.Guangdong Univ Technol, Guangdong Prov Key Lab Intelligent Decis & Coopera, Guangzhou 510006, Guangdong, Peoples R China 3.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 |
Liu, Mingxiang,Cai, Qianqian,Li, Dandan,et al. Output feedback Q-learning for discrete-time finite-horizon zero-sum games with application to the H-? control[J]. NEUROCOMPUTING,2023,529:48-55.
|
APA |
Liu, Mingxiang,Cai, Qianqian,Li, Dandan,Meng, Wei,&Fu, Minyue.(2023).Output feedback Q-learning for discrete-time finite-horizon zero-sum games with application to the H-? control.NEUROCOMPUTING,529,48-55.
|
MLA |
Liu, Mingxiang,et al."Output feedback Q-learning for discrete-time finite-horizon zero-sum games with application to the H-? control".NEUROCOMPUTING 529(2023):48-55.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论