题名 | Pixel-Level Classification of Five Histologic Patterns of Lung Adenocarcinoma |
作者 | |
通讯作者 | Ran, Dongmei; Guo, Zhiyong |
发表日期 | 2023-02-07
|
DOI | |
发表期刊 | |
ISSN | 0003-2700
|
EISSN | 1520-6882
|
卷号 | 95期号:5页码:2664-2670 |
摘要 | Lung adenocarcinoma is the most common histologic type of lung cancer. The pixel-level labeling of histologic patterns of lung adenocarcinoma can assist pathologists in determining tumor grading with more details than normal classification. We manually annotated a dataset containing a total of 1000 patches (200 patches for each pattern) of 512 x 512 pixels and 420 patches (contains test sets) of 1024 x 1024 pixels according to the morphological features of the five histologic patterns of lung adenocarcinoma (lepidic, acinar, papillary, micropapillary, and solid). To generate an even large amount of data patches, we developed a data stitching strategy as a data augmentation for classification in model training. Stitched patches improve the Dice similarity coefficient (DSC) scores by 24.06% on the whole-slide image (WSI) with the solid pattern. We propose a WSI analysis framework for lung adenocarcinoma pathology, intelligently labeling lung adenocarcinoma histologic patterns at the pixel level. Our framework contains five branches of deep neural networks for segmenting each histologic pattern. We test our framework with 200 unclassified patches. The DSC scores of our results outpace comparing networks (U-Net, LinkNet, and FPN) by up to 10.78%. We also perform results on four WSIs with an overall accuracy of 99.6%, demonstrating that our network framework exhibits better accuracy and robustness in most cases. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 通讯
|
资助项目 | Shenzhen Science and Technology Program["KQTD20170810110913065","20200925174735005"]
|
WOS研究方向 | Chemistry
|
WOS类目 | Chemistry, Analytical
|
WOS记录号 | WOS:000929166900001
|
出版者 | |
EI入藏号 | 20230513493653
|
EI主题词 | Biological organs
; Classification (of information)
; Deep neural networks
; Grading
; Image enhancement
; Image segmentation
; Statistical tests
|
EI分类号 | Biological Materials and Tissue Engineering:461.2
; Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Information Sources and Analysis:903.1
; Mathematical Statistics:922.2
|
ESI学科分类 | CHEMISTRY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/501452 |
专题 | 工学院_生物医学工程系 理学院_化学系 |
作者单位 | 1.Southern Univ Sci & Technol, UTS SUSTech Joint Res Ctr Biomed Mat & Devices, Dept Biomed Engn, Guangdong Prov Key Lab Adv Biomat, Shenzhen 518055, Peoples R China 2.Southern Univ Sci, Technol Hosp, Dept Pathol, Shenzhen 518055, Peoples R China 3.Yangtze Univ, Sch Elect & Informat, Jingzhou 434023, Peoples R China 4.Southern Univ Sci & Technol, UTS SUSTech Joint Res Ctr Biomed Mat & Devices, Dept Biomed Engn, Shenzhen 518055, Peoples R China 5.Univ Technol Sydney, Inst Biomed Mat & Devices IBMD, Fac Sci, Sydney, NSW 2007, Australia 6.Yangtze Univ, Sch Elect & Informat, Jingzhou 434023, Peoples R China 7.Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Peoples R China |
第一作者单位 | 生物医学工程系 |
通讯作者单位 | 生物医学工程系 |
推荐引用方式 GB/T 7714 |
Shao, Dan,Su, Fei,Zou, Xueyu,et al. Pixel-Level Classification of Five Histologic Patterns of Lung Adenocarcinoma[J]. ANALYTICAL CHEMISTRY,2023,95(5):2664-2670.
|
APA |
Shao, Dan.,Su, Fei.,Zou, Xueyu.,Lu, Jie.,Wu, Sitong.,...&Jin, Dayong.(2023).Pixel-Level Classification of Five Histologic Patterns of Lung Adenocarcinoma.ANALYTICAL CHEMISTRY,95(5),2664-2670.
|
MLA |
Shao, Dan,et al."Pixel-Level Classification of Five Histologic Patterns of Lung Adenocarcinoma".ANALYTICAL CHEMISTRY 95.5(2023):2664-2670.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论