中文版 | English
题名

Pixel-Level Classification of Five Histologic Patterns of Lung Adenocarcinoma

作者
通讯作者Ran, Dongmei; Guo, Zhiyong
发表日期
2023-02-07
DOI
发表期刊
ISSN
0003-2700
EISSN
1520-6882
卷号95期号:5页码:2664-2670
摘要
Lung adenocarcinoma is the most common histologic type of lung cancer. The pixel-level labeling of histologic patterns of lung adenocarcinoma can assist pathologists in determining tumor grading with more details than normal classification. We manually annotated a dataset containing a total of 1000 patches (200 patches for each pattern) of 512 x 512 pixels and 420 patches (contains test sets) of 1024 x 1024 pixels according to the morphological features of the five histologic patterns of lung adenocarcinoma (lepidic, acinar, papillary, micropapillary, and solid). To generate an even large amount of data patches, we developed a data stitching strategy as a data augmentation for classification in model training. Stitched patches improve the Dice similarity coefficient (DSC) scores by 24.06% on the whole-slide image (WSI) with the solid pattern. We propose a WSI analysis framework for lung adenocarcinoma pathology, intelligently labeling lung adenocarcinoma histologic patterns at the pixel level. Our framework contains five branches of deep neural networks for segmenting each histologic pattern. We test our framework with 200 unclassified patches. The DSC scores of our results outpace comparing networks (U-Net, LinkNet, and FPN) by up to 10.78%. We also perform results on four WSIs with an overall accuracy of 99.6%, demonstrating that our network framework exhibits better accuracy and robustness in most cases.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文
学校署名
通讯
资助项目
Shenzhen Science and Technology Program["KQTD20170810110913065","20200925174735005"]
WOS研究方向
Chemistry
WOS类目
Chemistry, Analytical
WOS记录号
WOS:000929166900001
出版者
EI入藏号
20230513493653
EI主题词
Biological organs ; Classification (of information) ; Deep neural networks ; Grading ; Image enhancement ; Image segmentation ; Statistical tests
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Information Sources and Analysis:903.1 ; Mathematical Statistics:922.2
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/501452
专题工学院_生物医学工程系
理学院_化学系
作者单位
1.Southern Univ Sci & Technol, UTS SUSTech Joint Res Ctr Biomed Mat & Devices, Dept Biomed Engn, Guangdong Prov Key Lab Adv Biomat, Shenzhen 518055, Peoples R China
2.Southern Univ Sci, Technol Hosp, Dept Pathol, Shenzhen 518055, Peoples R China
3.Yangtze Univ, Sch Elect & Informat, Jingzhou 434023, Peoples R China
4.Southern Univ Sci & Technol, UTS SUSTech Joint Res Ctr Biomed Mat & Devices, Dept Biomed Engn, Shenzhen 518055, Peoples R China
5.Univ Technol Sydney, Inst Biomed Mat & Devices IBMD, Fac Sci, Sydney, NSW 2007, Australia
6.Yangtze Univ, Sch Elect & Informat, Jingzhou 434023, Peoples R China
7.Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Peoples R China
第一作者单位生物医学工程系
通讯作者单位生物医学工程系
推荐引用方式
GB/T 7714
Shao, Dan,Su, Fei,Zou, Xueyu,et al. Pixel-Level Classification of Five Histologic Patterns of Lung Adenocarcinoma[J]. ANALYTICAL CHEMISTRY,2023,95(5):2664-2670.
APA
Shao, Dan.,Su, Fei.,Zou, Xueyu.,Lu, Jie.,Wu, Sitong.,...&Jin, Dayong.(2023).Pixel-Level Classification of Five Histologic Patterns of Lung Adenocarcinoma.ANALYTICAL CHEMISTRY,95(5),2664-2670.
MLA
Shao, Dan,et al."Pixel-Level Classification of Five Histologic Patterns of Lung Adenocarcinoma".ANALYTICAL CHEMISTRY 95.5(2023):2664-2670.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shao, Dan]的文章
[Su, Fei]的文章
[Zou, Xueyu]的文章
百度学术
百度学术中相似的文章
[Shao, Dan]的文章
[Su, Fei]的文章
[Zou, Xueyu]的文章
必应学术
必应学术中相似的文章
[Shao, Dan]的文章
[Su, Fei]的文章
[Zou, Xueyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。