题名 | Event-triggered adaptive dynamic programming for decentralized tracking control of input constrained unknown nonlinear interconnected systems |
作者 | |
通讯作者 | Zhao, Bo |
发表日期 | 2023
|
DOI | |
发表期刊 | |
ISSN | 0893-6080
|
EISSN | 1879-2782
|
卷号 | 157页码:336-349 |
摘要 | This paper addresses decentralized tracking control (DTC) problems for input constrained unknown nonlinear interconnected systems via event-triggered adaptive dynamic programming. To reconstruct the system dynamics, a neural-network-based local observer is established by using local input-output data and the desired trajectories of all other subsystems. By employing a nonquadratic value function, the DTC problem of the input constrained nonlinear interconnected system is transformed into an optimal control problem. By using the observer-critic architecture, the DTC policy is obtained by solving the local Hamilton-Jacobi-Bellman equation through the local critic neural network, whose weights are tuned by the experience replay technique to relax the persistence of excitation condition. Under the event-triggering mechanism, the DTC policy is updated at the event-triggering instants only. Then, the computational resource and the communication bandwidth are saved. The stability of the closed -loop system is guaranteed by implementing event-triggered DTC policy via Lyapunov's direct method. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed scheme.(c) 2022 Elsevier Ltd. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China["62073085","61973330"]
; Beijing Natural Science Foundation[4212038]
; Open Research Project of the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences[20210108]
|
WOS研究方向 | Computer Science
; Neurosciences & Neurology
|
WOS类目 | Computer Science, Artificial Intelligence
; Neurosciences
|
WOS记录号 | WOS:000926142600008
|
出版者 | |
EI入藏号 | 20230213352285
|
EI主题词 | Adaptive control systems
; Closed loop control systems
; Large scale systems
; Navigation
; Neural networks
; Optimal control systems
|
EI分类号 | Control Systems:731.1
; Optimization Techniques:921.5
; Systems Science:961
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/501466 |
专题 | 工学院_机械与能源工程系 |
作者单位 | 1.Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China 2.Beijing Normal Univ, Sch Syst Sci, Beijing 100875, Peoples R China 3.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China 4.Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA 5.Univ Cyprus, Dept Elect & Comp Engn, CY-2109 Nicosia, Cyprus 6.Univ Cyprus, KIOS Res Ctr Excellence, CY-2109 Nicosia, Cyprus |
推荐引用方式 GB/T 7714 |
Wu, Qiuye,Zhao, Bo,Liu, Derong,et al. Event-triggered adaptive dynamic programming for decentralized tracking control of input constrained unknown nonlinear interconnected systems[J]. NEURAL NETWORKS,2023,157:336-349.
|
APA |
Wu, Qiuye,Zhao, Bo,Liu, Derong,&Polycarpou, Marios M..(2023).Event-triggered adaptive dynamic programming for decentralized tracking control of input constrained unknown nonlinear interconnected systems.NEURAL NETWORKS,157,336-349.
|
MLA |
Wu, Qiuye,et al."Event-triggered adaptive dynamic programming for decentralized tracking control of input constrained unknown nonlinear interconnected systems".NEURAL NETWORKS 157(2023):336-349.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论