中文版 | English
题名

A satellite-driven model to estimate long-term particulate sulfate levels and attributable mortality burden in China

作者
通讯作者Shi, Xiaoming; Liu, Yang
共同第一作者Hang, Yun
发表日期
2023
DOI
发表期刊
ISSN
0160-4120
EISSN
1873-6750
卷号171
摘要

Ambient fine particulate matter (PM2.5) pollution is a major environmental and public health challenge in China. In the recent decade, the PM2.5 level has decreased mainly driven by reductions in particulate sulfate as a result of large-scale desulfurization efforts in coal-fired power plants and industrial facilities. Emerging evidence also points to the differential toxicity of particulate sulfate affecting human health. However, estimating the long-term spatiotemporal trend of sulfate is difficult because a ground monitoring network of PM2.5 constituents has not been established in China. Spaceborne sensors such as the Multi-angle Imaging SpectroRadiometer (MISR) instrument can provide complementary information on aerosol size and type. With the help of state-of-the-art machine learning techniques, we developed a sulfate prediction model under support from available ground measurements, MISR-retrieved aerosol microphysical properties, and atmospheric reanalysis data at a spatial resolution of 0.1 degrees. Our sulfate model performed well with an out-of-bag cross-validation R-2 of 0.68 at the daily level and 0.93 at the monthly level. We found that the national mean population-weighted sulfate con-centration was relatively stable before the Air Pollution Prevention and Control Action Plan was enforced in 2013, ranging from 10.4 to 11.5 mu g m(-3). But the sulfate level dramatically decreased to 7.7 mu g m(-3) in 2018, with a change rate of-28.7 % from 2013 to 2018. Correspondingly, the annual mean total non-accidental and car-diopulmonary deaths attributed to sulfate decreased by 40.7 % and 42.3 %, respectively. The long-term, full -coverage sulfate level estimates will support future studies on evaluating air quality policies and understanding the adverse health effect of particulate sulfate.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Institute of Environmental Health Sciences (NIEHS) of the National Institutes of Health[1R01ES032140]
WOS研究方向
Environmental Sciences & Ecology
WOS类目
Environmental Sciences
WOS记录号
WOS:000937560600001
出版者
EI入藏号
20230213379728
EI主题词
Aerosols ; Air Quality ; Big Data ; Coal Fired Power Plant ; Fossil Fuel Power Plants ; Sulfur Compounds
EI分类号
Air Pollution Control:451.2 ; Electric Transmission And Distribution:706 ; Data Processing And Image Processing:723.2 ; Artificial Intelligence:723.4
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/501498
专题南方科技大学医学院_公共卫生及应急管理学院
作者单位
1.Fudan Univ, Sch Publ Hlth, Shanghai 200032, Peoples R China
2.Emory Univ, Rollins Sch Publ Hlth, Gangarosa Dept Environm Hlth, Atlanta, GA 30322 USA
3.Chinese Ctr Dis Control & Prevent, Natl Inst Environm Hlth, China CDC Key Lab Environm & Populat Hlth, Beijing 100021, Peoples R China
4.Nanjing Univ, Sch Atmospher Sci, Nanjing 210023, Peoples R China
5.Chinese Acad Sci, Inst Earth Environm, CAS Ctr Excellence Quaternary Sci & Global Change, Key Lab Aerosol Chem & Phys,State Key Lab Loess &, Xian 710061, Peoples R China
6.Shanghai Environm Monitoring Ctr, State Ecol Environm Sci Observat & Res Stn Diansha, Shanghai 200235, Peoples R China
7.Indian Inst Technol Delhi, Ctr Atmospher Sci, New Delhi 110016, India
8.Fudan Univ, Dept Environm Sci & Engn, Shanghai Key Lab Atmospher Particle Pollut & Preve, Shanghai 200433, Peoples R China
9.Southern Univ Sci & Technol, Sch Publ Hlth & Emergency Management, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Meng, Xia,Hang, Yun,Lin, Xiuran,et al. A satellite-driven model to estimate long-term particulate sulfate levels and attributable mortality burden in China[J]. ENVIRONMENT INTERNATIONAL,2023,171.
APA
Meng, Xia.,Hang, Yun.,Lin, Xiuran.,Li, Tiantian.,Wang, Tijian.,...&Liu, Yang.(2023).A satellite-driven model to estimate long-term particulate sulfate levels and attributable mortality burden in China.ENVIRONMENT INTERNATIONAL,171.
MLA
Meng, Xia,et al."A satellite-driven model to estimate long-term particulate sulfate levels and attributable mortality burden in China".ENVIRONMENT INTERNATIONAL 171(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Meng, Xia]的文章
[Hang, Yun]的文章
[Lin, Xiuran]的文章
百度学术
百度学术中相似的文章
[Meng, Xia]的文章
[Hang, Yun]的文章
[Lin, Xiuran]的文章
必应学术
必应学术中相似的文章
[Meng, Xia]的文章
[Hang, Yun]的文章
[Lin, Xiuran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。