中文版 | English
题名

Learning to Learn Evolutionary Algorithm: A Learnable Differential Evolution

作者
发表日期
2023
DOI
发表期刊
ISSN
2471-285X
卷号PP期号:99页码:1-16
摘要
Research on evolutionary optimization has flourished for several decades. Now it has come to a turning point. With the advancement of artificial intelligence, especially deep learning and reinforcement learning, it is becoming appealing to rethink the design and development of evolutionary algorithm (EA). From our perspective, a new-generation EA should be learned rather than manually designed, based on learning from optimization experiences (such as obtained from optimizing a family of optimization problems), the deep understanding of the roles of recombination operators, and the usage of experiences extracted through history optimization trajectories, so as to intelligently decide the control parameters that can adapt to the problem landscape changes. This learning can be conducted by strongly coupling with reinforcement learning since an evolutionary search procedure can be modeled as a Markov Decision Process (MDP). In this paper we propose a framework for automatic learning of EA, and present an exemplar study on learning a differential evolution (DE). Experimental results show that the learned adaptive DE is very competitive to some recent EAs on a commonly-used test suite, which indicates that the proposed learning framework has a great potential for the automatic design of promising EAs.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["11991023","62076197","62106096"] ; Shenzhen Technology Plan[JCYJ20220530113013031]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000953749700001
出版者
EI入藏号
20231413847744
EI主题词
Deep learning ; Evolutionary algorithms ; Learning algorithms ; Markov processes ; Reinforcement learning
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Optimization Techniques:921.5 ; Probability Theory:922.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10068274
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/501512
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
2.Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
3.Department of Computer Science and Engineering, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Xin Liu,Jianyong Sun,Qingfu Zhang,et al. Learning to Learn Evolutionary Algorithm: A Learnable Differential Evolution[J]. IEEE Transactions on Emerging Topics in Computational Intelligence,2023,PP(99):1-16.
APA
Xin Liu,Jianyong Sun,Qingfu Zhang,Zhenkun Wang,&Zongben Xu.(2023).Learning to Learn Evolutionary Algorithm: A Learnable Differential Evolution.IEEE Transactions on Emerging Topics in Computational Intelligence,PP(99),1-16.
MLA
Xin Liu,et al."Learning to Learn Evolutionary Algorithm: A Learnable Differential Evolution".IEEE Transactions on Emerging Topics in Computational Intelligence PP.99(2023):1-16.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xin Liu]的文章
[Jianyong Sun]的文章
[Qingfu Zhang]的文章
百度学术
百度学术中相似的文章
[Xin Liu]的文章
[Jianyong Sun]的文章
[Qingfu Zhang]的文章
必应学术
必应学术中相似的文章
[Xin Liu]的文章
[Jianyong Sun]的文章
[Qingfu Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。