中文版 | English
题名

Fast Multi-Grid Methods for Minimizing Curvature Energies

作者
发表日期
2023
DOI
发表期刊
ISSN
1941-0042
EISSN
1941-0042
卷号32页码:1716-1731
摘要
The geometric high-order regularization methods such as mean curvature and Gaussian curvature, have been intensively studied during the last decades due to their abilities in preserving geometric properties including image edges, corners, and contrast. However, the dilemma between restoration quality and computational efficiency is an essential roadblock for high-order methods. In this paper, we propose fast multi-grid algorithms for minimizing both mean curvature and Gaussian curvature energy functionals without sacrificing accuracy for efficiency. Unlike the existing approaches based on operator splitting and the Augmented Lagrangian method (ALM), no artificial parameters are introduced in our formulation, which guarantees the robustness of the proposed algorithm. Meanwhile, we adopt the domain decomposition method to promote parallel computing and use the fine-to-coarse structure to accelerate convergence. Numerical experiments are presented on image denoising, CT, and MRI reconstruction problems to demonstrate the superiority of our method in preserving geometric structures and fine details. The proposed method is also shown effective in dealing with large-scale image processing problems by recovering an image of size $1024\times 1024$ within 40s, while the ALM-based method requires around 200s.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China (NSFC)["12071345","11701418"]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000947305800004
出版者
EI入藏号
20231113737176
EI主题词
Computational efficiency ; Computerized tomography ; Constrained optimization ; Gaussian distribution ; Geometry ; Image denoising ; Image reconstruction ; Magnetic resonance imaging ; Numerical methods
EI分类号
Magnetism: Basic Concepts and Phenomena:701.2 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Imaging Techniques:746 ; Mathematics:921 ; Numerical Methods:921.6 ; Probability Theory:922.1 ; Mathematical Statistics:922.2 ; Systems Science:961
ESI学科分类
ENGINEERING
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10061442
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/501516
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Center for Applied Mathematics, Tianjin University, Tianjin, China
2.Department of Mathematical Sciences, Liverpool Centre of Mathematics for Healthcare and Centre for Mathematical Imaging Techniques, University of Liverpool, Liverpool, U.K.
3.Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-Inspired Intelligent Computation, Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Zhenwei Zhang,Ke Chen,Ke Tang,et al. Fast Multi-Grid Methods for Minimizing Curvature Energies[J]. IEEE Transactions on Image Processing,2023,32:1716-1731.
APA
Zhenwei Zhang,Ke Chen,Ke Tang,&Yuping Duan.(2023).Fast Multi-Grid Methods for Minimizing Curvature Energies.IEEE Transactions on Image Processing,32,1716-1731.
MLA
Zhenwei Zhang,et al."Fast Multi-Grid Methods for Minimizing Curvature Energies".IEEE Transactions on Image Processing 32(2023):1716-1731.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhenwei Zhang]的文章
[Ke Chen]的文章
[Ke Tang]的文章
百度学术
百度学术中相似的文章
[Zhenwei Zhang]的文章
[Ke Chen]的文章
[Ke Tang]的文章
必应学术
必应学术中相似的文章
[Zhenwei Zhang]的文章
[Ke Chen]的文章
[Ke Tang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。