中文版 | English
题名

Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps

作者
通讯作者Wu, Ed X.
发表日期
2023-02-01
DOI
发表期刊
ISSN
0740-3194
EISSN
1522-2594
卷号90期号:1页码:280-294
摘要
Purpose: To develop a truly calibrationless reconstruction method that derives An Eigenvalue Approach to Autocalibrating Parallel MRI (ESPIRiT) maps from uniformly-undersampled multi-channel MR data by deep learning.Methods: ESPIRiT, one commonly used parallel imaging reconstruction technique, forms the images from undersampled MR k-space data using ESPIRiT maps that effectively represents coil sensitivity information. Accurate ESPIRiT map estimation requires quality coil sensitivity calibration or autocalibration data. We present a U-Net based deep learning model to estimate the multi-channel ESPIRiT maps directly from uniformly-undersampled multi-channel multi-slice MR data. The model is trained using fully-sampled multi-slice axial brain datasets from the same MR receiving coil system. To utilize subject-coil geometric parameters available for each dataset, the training imposes a hybrid loss on ESPIRiT maps at the original locations as well as their corresponding locations within the standard reference multi-slice axial stack. The performance of the approach was evaluated using publicly available T1-weighed brain and cardiac data.Results: The proposed model robustly predicted multi-channel ESPIRiT maps from uniformly-undersampled k-space data. They were highly comparable to the reference ESPIRiT maps directly computed from 24 consecutive central k-space lines. Further, they led to excellent ESPIRiT reconstruction performance even at high acceleration, exhibiting a similar level of errors and artifacts to that by using reference ESPIRiT maps.Conclusion: A new deep learning approach is developed to estimate ESPIRiT maps directly from uniformly-undersampled MR data. It presents a general strategy for calibrationless parallel imaging reconstruction through learning from the coil and protocol-specific data.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Hong Kong Research Grant Council["R7003-19F","HKU17112120","HKU17127121","HKU17127022","HKU17103819","HKU17104020","HKU17127021"] ; Guangdong Key Technologies for Treatment of Brain Disorders[2018B030332001]
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000940154200001
出版者
EI入藏号
20231113740101
EI主题词
Eigenvalues and eigenfunctions ; Learning systems ; Magnetic resonance
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Magnetism: Basic Concepts and Phenomena:701.2
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/501527
专题工学院_电子与电气工程系
作者单位
1.Univ Hong Kong, Lab Biomed Imaging & Signal Proc, Hong Kong, Peoples R China
2.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Junhao,Yi, Zheyuan,Zhao, Yujiao,et al. Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps[J]. MAGNETIC RESONANCE IN MEDICINE,2023,90(1):280-294.
APA
Zhang, Junhao.,Yi, Zheyuan.,Zhao, Yujiao.,Xiao, Linfang.,Hu, Jiahao.,...&Wu, Ed X..(2023).Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps.MAGNETIC RESONANCE IN MEDICINE,90(1),280-294.
MLA
Zhang, Junhao,et al."Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps".MAGNETIC RESONANCE IN MEDICINE 90.1(2023):280-294.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Junhao]的文章
[Yi, Zheyuan]的文章
[Zhao, Yujiao]的文章
百度学术
百度学术中相似的文章
[Zhang, Junhao]的文章
[Yi, Zheyuan]的文章
[Zhao, Yujiao]的文章
必应学术
必应学术中相似的文章
[Zhang, Junhao]的文章
[Yi, Zheyuan]的文章
[Zhao, Yujiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。