题名 | FULL-WAVEFORM INVERSION USING ACOUSTIC LOGGING DATA |
姓名 | |
姓名拼音 | TANG Huaigu
|
学号 | 11855008
|
学位类型 | 博士
|
学位专业 | 土木工程
|
导师 | |
导师单位 | 地球与空间科学系
|
论文答辩日期 | 2023-01-16
|
论文提交日期 | 2023-03-17
|
学位授予单位 | 新加坡国立大学
|
学位授予地点 | 新加坡
|
摘要 | Acoustic logging is the principal method for measuring the elastic wave velocities of formation rock around the borehole. The measured velocities around the borehole provide useful geophysical and mechanical information for petroleum engineers. Therefore, it is necessary to guarantee the accuracy of the elastic wave velocities measured from the acoustic logging data. Conventional methods process the acoustic logging data without considering the radial velocity variations around the borehole, thus may provide incorrect rocks’ velocities and miss many useful rock properties. Ray-tracing tomography is currently applied for obtaining the velocity structures around the borehole, which is an inversion method using the travel time of elastic waves. FWI (full-waveform inversion) was developed for building the seismic velocity model using seismic data. Since FWI could utilize the information in the waveform, FWI is a promising method to build the velocity model with higher resolution than ray-tracing tomography. Both seismic data and acoustic logging data are quantified using the same elastic wave equations. Therefore, FWI using the acoustic logging data has the potential to obtain the velocity model around the borehole with higher resolution.
A feature of borehole acoustic logging data is the existence of strong borehole guided waves. During the field data tests, it was found that matching the whole waveform of the calculated data and the observed field data is challenging. Therefore, the field data application of FWI is applied using only the waveform of the first arrived P waves.
Although synthetic data and field data tests prove the feasibility of FWI using the first arrived P waves of acoustic logging data, the velocity model inverted by the FWI only slightly improves than ray-tracing tomography. Information in the whole waveform should be utilized to achieve high-resolution results. Therefore, checking the approximations made in numerical simulation through experiments and theoretical analysis is necessary. The thesis contains six chapters to illustrate the products of this Ph.D. research of FWI using acoustic logging data. The first chapter briefly introduces necessary background knowledge, including the importance of the underground velocity model, acoustic logging, and FWI. The second chapter is composed of two parts: a detailed literature review of methods for processing the acoustic logging data; then a thesis road map highlighting the current state of the art of the subject matter and justifying the needs of the current research. The third chapter first elaborates on the derivation of the FWI algorithm in the 2D cylindrical coordinates, then examines the algorithm through synthetic acoustic logging data tests. The fourth chapter illustrates the applicability of the FWI algorithm using field acoustic logging data. In addition, the difficulties of matching the whole waveform of the field and synthetic data are shown in this chapter. The fifth chapter focuses on analyzing the factors that may affect the waveform of the simulated acoustic logging data through the methods of the analytical solution. The sixth chapter concludes the research and proposes future works. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2018
|
学位授予年份 | 2023-02-28
|
参考文献列表 | Archie, G.E., (1942). “The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics.” In: Transaction of the AIME 146.01, pp. 54–62.Asquith, G. B., and D. Krygowski, (2004). “Basic well log analysis”. Vol. 16. Tulsa: American Association of Petroleum Geologists.Barclay, F., Bruun, A., Rasmussen, K. B., Alfaro, J. C., Cooke, A., Cooke, D., Salter, D., Godfrey, R., Lowden D., McHugo, S., ozdemir, H., Pickering, S., Pineda, F. G., Herwanger, J., Volterrani, S., Murineddu, A., Rasmussen, A., and Roberts, R. (2008). “Seismic inversion: Reading between the lines”. In: Oilfield Review 20.1, pp. 42-63.Barnes, C., and Charara, M. (2009). “Viscoelastic full waveform inversion of North Sea offset VSP data”. In: 2009 SEG Annual Meeting. OnePetro.Basten, T. G., and de Bree, H. E. (2010). “Full bandwidth calibration procedure for acoustic probes containing a pressure and particle velocity sensor”. In: The Journal of the Acoustical Society of America 127.1, pp. 264-270.Biot, M. A. (1956a). “Theory of propagation of elastic waves in a fluid saturated porous solid.Ⅰ. Low frequency range”. In: J. Acoust. Soc. Am. 28. 2, pp. 168-178.—— (1956b). “Theory of propagation of elastic waves in a fluid saturated porous solid. Ⅱ. Higher frequency range”. In: J. Acoust. Soc. Am. 28. 2, pp. 179-191.Block, L.V., Cheng, C.H., and Duckworth, G.L. (1991). "Velocity Analysis Of Multiweceiver Full-waveform Acoustic-logging Data In Open And Cased Holes." In: The Log Analyst 32. 3.Bourbié, T., O. Coussy, B. Zinszner, and Junger, M. C. (1992). “Acoustics of porous media”. Acoustical Society of America.Brenders, A. J., and Pratt, R. G. (2007). “Efficient waveform tomography for lithospheric imaging: Implications for realistic 2D acquisition geometries and low frequency data” In: Geophysical Journal International 168. 1, pp. 152–170.Bunks, C., F.M. Saleck, S. Zaleski, and G. Chavent. (1995). “Multiscale seismic waveform inversion”. In: Geophysics 60. 5, pp. 1457–1473.Chen, Y. H., Chew, W. C., and Liu, Q. H. (1998). “A three-dimensional finite difference code for the modeling of sonic logging tools.” In: The Journal of the Acoustical Society of America 103. 2, pp. 702–712.Chen, S. T. (1982). “The full acoustic wave train in a laboratory model of a borehole”. In: Geophysics, 47.11, pp. 1512-1520.Cheng, C. H. (1989). “Full waveform inversion of P waves for Vs and Qp”. In: J. Geophys. Res. 94, pp. 19619–19625.Cheng, C. H., and J. E. Foley. (1992). “Simulated annealing determination of shear wave travel time”. In: SPLWA 33rd Annual Logging Sympossium. OnePetro.Cheng, C. H., and M. N. Toksöz, (1981), “Elastic wave propagation in a fluid-filled borehole and synthetic acoustic logs”. In: Geophysics 46. 7, pp. 1042-1053.Cheng, C. H., M. N. Toksöz, and M. E. Willis. (1982). “Determination of in situ attenuation from full waveform acoustic logs”. In: Journal of Geophysical Research: Solid Earth 87. B7, pp. 5477-5484.Cheng, N., C.H. Cheng, and M.N. Toksöz. (1995). “Borehole wave propagation in three-dimensions”. In: J. Acoust. Soc. Am. 97. 6, pp. 3483-3493.Chew, W. C. (1995). “Waves and fields in inhomogenous media”. Vol. 16. Wiley-IEEE Press.Chi, S., Torres-Verdín, C., Wu, J., and Alpak, F. O. (2006). “Assessment of Mud-Fiitrate-invasion Effects on Borehole Acoustic Logs and Radiai Profiling of Formation Elastic Properties”. In: SPE Reservoir Evaluation and Engineering 9. 05, pp. 553-564.Claerbout, J. (2014). “Geophysical image estimation by example” Lulu. com.Fang, X., and Cheng, A. (2018). “Detection of formation S-wave in a slow formation using a monopole acoustic logging-while-drilling tool”. In: Geophysics, 78. 1, pp. D9-D16.Fang, X., M. Fehler, Z. Zhu, T. Chen, S. Brown, A. Cheng, and M. N. Toksöz. (2013). “An approach for predicting stress-induced anisotropy around a borehole”. In: Geophysics 78. 3, pp. D143-D150.Fang, X, M. C. Fehler, and A. Cheng. (2014). “Simulation of the effect of stress-induced anisotropy on borehole compressional wave propagation”. In: Geophysics 79. 4, pp. D205-D216.Garland, M., S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov. (2008). “Parallel computing experiences with CUDA”. In: IEEE micro 28. 4, pp. 13-27.Gauthier, O., J. Virieux, and A. Tarantola. (1986). “Two-dimensional nonlinear inversion of seismic waveforms: Numerical results”. In: Geophysics 51. 7, pp. 1387–1403.Gao, F., A. R. Levander, R. G. Pratt, C. A. Zelt, and G. L. Fradelizio. (2006). “Waveform tomography at a groundwater contamination site: VSP-surface data set”. In: Geophysics 71. 1, pp. H1–H11.Gholamy, A., and Kreinovich, V. (2014). “Why Ricker wavelets are successful in processing seismic data: Towards a theoretical explanation”. In: 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES). pp. 11-16.Graves, R. W. (1996). “Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences”. In: Bulletin of the Seismological Society of America 86. 4, pp. 1091-1106.Greenberg, M. L., and J. P. Castagna. (1992). “Shear wave velocity estimation in porous rock: theoretical formulation, preliminary verification, and applications”. In: Geophysical Prospecting 40. 2, pp. 195-209.Groos, L., Schäfer, M., Forbriger, T., and Bohlen, T. (2014). “The role of attenuation in 2D full-waveform inversion of shallow-seismic body and Rayleigh waves”. In: Geophysics 79. 6, pp. R247-R261.Han, D. H., Nur, A., and Dale, M. (1986). “Effects of porosity and clay content on wave velocities in sandstones”, In: Geophysics 51. 11, pp. 2093-2107.Han, D. H., and Batzle, M. (1997). “Fluid invasion effects on sonic interpretation”. In: SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists, pp. 298-300.Hornby, B. E. (1993). “Tomographic reconstruction of near-borehole slowness using refracted borehole sonic arrivals”. In: Geophysics 58. 12, pp. 1726-1738.Huntley, L. G. (1965). “Factors Affecting Acoustic Amplitude Logs-And Their Evaluation”. In: SPWLA 6th Annual Logging Symposium (Volume I). OnePetro.Hustedt, B., Operto, S., and Virieux, J. (2004). “Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling”. In: Geophysical Journal International 157. 3, 1269-1296.Jaeger, J. C., Cook, N. G., and Zimmerman, R. (2009). “Fundamentals of rock mechanics”. John Wiley & Sons.Jo, C. H., Shin, C., and Suh, J. H. (1996). “An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator”. In Geophysics 61.2, pp. 529-537.Ji, Y., He, X., Chen, H., Wang, X., and Zhang, H. (2021). “Acoustic fields for monopole logging while drilling with an eccentric collar”. In: Geophysics, 86. 2, pp. D43-D63.Jianlei, Z., Zhenping, T., and Chengxiang, W. (2007). “P-and S-wave-separated elastic wave-equation numerical modeling using 2D staggered grid”. In: SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists. pp. 2104-2109.Kayama, K., Mikada, H., and Takekawa, J. (2021). “Dispersion of flexural waves in a borehole with a tensile fracture in an anisotropic stress environment”. In: Geophysical Prospecting, 69. 3, PP. 598-607.Kimball, C. V., and T. L. Marzetta. (1984). “Semblance processing of borehole acoustic array data” In: Geophysics 49. 3, pp. 274-281.Kurkjian, A. L. (1985). “Numerical computation of individual far-field arrivals excited by an acoustic source in a borehole”. In Geophysics 50. 5, pp. 852-866.Kurkjian, A. L., and Chang, S. K. (1986). “Acoustic multipole sources in fluid-filled boreholes”. In: Geophysics 51. 1, pp. 148-163.Korn, G. A., and Korn, T. M. (2000). “Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review”. Courier Corporation. Kokesh, F.P., Schwartz, R.J., Wall, W.B., and R.L. Morris. (1965). “A New Approach to Sonic Logging and Other Acoustic Measurements”. In: J Pet Technol 17, pp. 282–286.Kitsunezaki, C. (1980). “A new method for shear-wave logging”. In: Geophysics 45. 10, pp. 1489-1506.Liao, J., Wang, H., and Ma, Z. (2009). “2-D elastic wave modeling with frequency-space 25-point finite-difference operators”. In: Applied Geophysics 6.3, pp. 259-266.Liu, H. P., Anderson, D. L., and Kanamori, H. (1976). “Velocity dispersion due to anelasticity; implications for seismology and mantle composition”. In: Geophysical Journal International 47. 1. , 41-58.Liu, Q. H., and C. Chang. (1996). “Compressional head waves in attenuative formations: Forward modeling and inversion” In: Geophysics 61. 6, pp. 1908-1920.Liu, Q. H., and Sinha, B. K. (2003). “A 3D cylindrical PML/FDTD method for elastic waves in fluid-filled pressurized boreholes in triaxially stressed formations”. In: Geophysics 68. 5, pp. 1731-1743.Lomnitz, C. (1957). “Linear dissipation in solids”. In: Journal of Applied Physics, 28. 2, pp. 201-205.Malinowski, M., Operto, S., and Ribodetti, A. (2011). “High-resolution seismic attenuation imaging from wide-aperture onshore data by visco-acoustic frequency-domain full-waveform inversion”. In: Geophysical Journal International 186. 3, pp. 1179-1204.Micikevicius, P. (2009). “3D finite difference computation on GPUs using CUDA”. In: Proceedings of 2nd workshop on general purpose processing on graphics processing units, pp. 79-84.Min, D. J., Shin, C., Kwon, B. D., and Chung, S. (2000). “Improved frequency-domain elastic wave modeling using weighted-averaging difference operatorsFrequency-Domain Elastic Modeling”. In: Geophysics 65. 3, pp. 884-895.Mirsky, I. (1965). “Wave propagation in transversely isotropic circular cylinders Part I: Theory”. In: The journal of the Acoustical Society of America 37. 6, pp. 1016-1021.Morse, P. M., and Feshbach, H. (1954). “Methods of theoretical physics”. In: American Journal of Physics. New York: McGraw-Hill Book Company. Operto, S., J.Virieux, J. X. Dessa, and G. Pascal. (2006). “Crustal imaging from multifold ocean bottom seismometers data by frequency-domain fullwaveform tomography”. In: Application to the eastern Nankai trough: Journal of Geophysical Research 111. B9.Owusu, J. C., Podgornova, O., Charara, M., Leaney, S., Campbell, A., Ali, S., Borodin, I., Nutt, L., and Menkiti, H. (2016). “Anisotropic elastic full‐waveform inversion of walkaway vertical seismic profiling data from the Arabian Gulf”. In: Geophysial Prospecting 64. 1, pp. 38-53.Peterson, E. W. (1974). “Acoustic wave propagation along a fluid‐filled cylinder”. In: Journal of Applied Physics, 45. 8, pp. 3340-3350.Rader, D. (1982). “Acoustic logging: the complete waveform and its interpretation”. In: Developments in Geophysical Exploration Methods 3. Springer, Dordrecht. pp. 151-193.Plessix, R. E. (2006) “A review of the adjoint-state method for computing the gradient of a functional with geophysical applications”. In: Geophysical Journal International 167. 2, pp. 495-503.Randall, C. J., D. J. Scheibner, and P. T. Wu. (1991). “Multipole borehole acoustic waveforms: Synthetic logs with beds and borehole washouts”. In: Geophysics 56. 11, pp. 1757-1769.Robertsson, J. O., Blanch, J. O., and Symes, W. W. (1994). “Viscoelastic finite-difference modeling”. In: Geophysics 59. 9, pp. 1444-1456.Roever, W. L., Rosenbaum, J. H., and Vining, T. F. (1974). “Acoustic waves from an impulsive source in a fluid‐filled borehole”. In: The Journal of the Acoustical Society of America 55. 6, pp. 1144-1157.Rostami, J., Chen, J., and Tse, P. W. (2017). “A signal processing approach with a smooth empirical mode decomposition to reveal hidden trace of corrosion in highly contaminated guided wave signals for concrete-covered pipes”. In: Sensors 17. 2, pp. 302.Schmitt, D. P., Y. Zhu, and C. H. Cheng. (1988). “Shear wave logging in semi-infinite saturated porous formations”. In: The Journal of the Acoustical Society of America 84. 6, pp. 2230-2244.Stephen, R. A., Cardo-Casas, F., and Cheng, C. H. (1985). “Finite-difference synthetic acoustic logs”. In: Geophysics 50. 10, pp. 1588-1609.Simpson, D. (2017). “Practical onshore gas field engineering”. Gulf Professional Publishing.Shin, C., and Sohn, H. (1998). “A frequency-space 2-D scalar wave extrapolator using extended 25-point finite-difference operator”. In: Geophysics 63. 1, pp. 289-296.Sirgue L., Barkved O. I., van Gestel J. P., Askim O. J., Kommedal J. H. (2009). “3D waveform inversion on Valhall wide-azimuth OBC”. In: 71st EAGE conference, pp. 1–4.Summers, G. C., and Broding, R. A. (1952). “Continuous velocity logging”. In: Geophysics 17. 3, pp. 598-614.Symes, W. W. (2009). “The seismic reflection inverse problem”. In: Inverse problems 25. 12, pp. 123008.Takekawa, J., Mikada, H., and Goto, T. N. (2014). “A Hamiltonian particle method with a staggered particle technique for simulating seismic wave propagation”. In: Pure and Applied Geophysics 171. 8., pp. 1747-1757.Tang, X., and C. H. Cheng. (2004). “Quantitative borehole acoustic methods”. Vol. 24. Elsevier.Tsang, L., and Rader, D. (1979). “Numerical evaluation of the transient acoustic waveform due to a point source in a fluid-filled borehole”. In: Geophysics 44. 10, pp. 1706-1720.Tubman, K. M. (1984). “Full waveform acoustic logs in radially layered boreholes” . Doctoral dissertation, Massachusetts Institute of Technology.Vásquez, G. F., Dillon, L. D., Varela, C. L., Neto, G. S., Velloso, R. Q., and Nunes, C. F. (2004). “Elastic log editing and alternative invasion correction methods”. In: The Leading Edge 23. 1, pp. 20-25.Virieux, J. (1986). “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method”. In: Geophysics 51. 4, pp. 889-901.Virieux, J., and S. Operto. (2009). “An overview of full-waveform inversion in exploration geophysics”. In: Geophysics 74. 6, pp. WCC1-WCC26.Vogel, C. B. (1952). “A seismic velocity logging method”. In: Geophysics 17. 3, pp. 586-597.Walker, Kris, J. Granville, G. Kainer, and A. Cheng. (2015). “Logging services: Towards the 3D measurement of formation properties in high-resolution with a continuous depth of investigation”. In: SPE ATCE. SPE 175093.Wang, H., Tao, G., and Zhang, K. (2013). “Wavefield simulation and analysis with the finite-element method for acoustic logging while drilling in horizontal and deviated wells”. In: Geophysics 78. 6, pp. D525-D543.Wang. R., Hornby, B., Walker, K., Chang, C., Kainer, G., Granville, J., Sun. B., and Kim, J., (2021). “Advanced monopole and dipole sonic log data processing—Part 1: Real time”. In: Geophysics 86. 2, pp. D77-D91.Wang, T., and X. Tang. (2003). “Finite difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach”. In: Geophysics 68. 5, pp. 1749-1755.Warner M, Nangoo T, Shah N, Umpleby A, and Morgan J. (2013). “Full-waveform inversion of cycle-skipped seismic data by frequency downshifting”. In: SEG Technical Program Expanded Abstracts. pp. 903–7.White, J. E. (1967). “The Hula Log: Proposed Acoustic Tool”. In: SPWLA 8th Annual Logging Symposium. OnePetro.White, J. E., and Zechman, R. E. (1968). “Computed response of an acoustic logging tool”. In: Geophysics 33. 2, pp. 302-310.Winkler, K. W. (1997). “Acoustic evidence of mechanical damage surrounding stressed boreholes”. In: Geophysics 62. 1, pp.16–22Willis, M.E., and M.N. Toksöz. (1983). “Automatic P and S velocity determination from full waveform digital acoustic logs”. In: Geophysics 48. 12, pp. 1631-1644.Yan, L., and R. L. Larry. (2001). “Seismic imaging and velocity analysis for an Alberta Foothills seismic surveySeismic Imaging for Alberta Foothills”. In: Geophysics 66. 3, pp. 721-732.Zemanek, J., Caldwell, R. L., Glenn, E. E., Holcomb, S. V., Norton, L. J., and Straus, A. J. D. (1969). “The borehole televiewera new logging concept for fracture location and other types of borehole inspection”. In: Journal of Petroleum Technology 21. 6, pp. 762-774.Zemanek, J., Angona, F. A., Williams, D. M., and Caldwell, R. L. (1984). “Continuous acoustic shear wave logging”. In: SPWLA 25th Annual Logging Symposium. OnePetro. Zhang W., and S. Yang. (2010). “Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling”. In: Geophysics 75. 4, pp. T141-T154.Zheng, Z., Kemeny, J., and Cook, N. G. (1989). “Analysis of borehole breakouts”. In: Journal of Geophysical Research: Solid Earth 94. B6, pp. 7171-7182.Zhu, T., and Carcione, J. M. (2014). “Theory and modelling of constant-Q P-and S-waves using fractional spatial derivatives”. In: Geophysical Journal International 196. 3, pp. 1787-1795. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/501552 |
专题 | 理学院_地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Tang HG. FULL-WAVEFORM INVERSION USING ACOUSTIC LOGGING DATA[D]. 新加坡. 新加坡国立大学,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11855008-唐怀谷-地球与空间科学(8792KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[唐怀谷]的文章 |
百度学术 |
百度学术中相似的文章 |
[唐怀谷]的文章 |
必应学术 |
必应学术中相似的文章 |
[唐怀谷]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论