中文版 | English
题名

A Fragmented Target Recognition System Based on Zero-Shot Learning

作者
DOI
发表日期
2023
ISSN
2158-3994
ISBN
978-1-6654-9131-0
会议录名称
卷号
2023-January
页码
01-06
会议日期
6-8 Jan. 2023
会议地点
Las Vegas, NV, USA
摘要
In recent years, target recognition and detection methods based on deep learning have shown great application prospects in many fields, such as smart house, driverless technology, product detection and military equipment, etc. However, in some extreme application scenarios, such as the emergency rescue, the target is inevitably fragmented due to the impact of explosion and many other factors, which leads the lack of effective feature information in the target image and affects the accuracy of target recognition and classification. In order to solve this problem, this paper proposes a new method to recognize fragmented targets based on zero-shot learning. This method solves the problem of target recognition under the condition of zero samples by introducing some high-level attributes. For verifying the effectiveness of this method, this paper takes five kinds of ingredients after cutting in daily life: cucumber, potato, tomato, eggplant, and bamboo as an example to illustrate and verify the whole process of the feature extraction, attribute recognition and the target classification in this method. The experiment results show that the highest recognition accuracy for the ingredients after processing in this fragmented recognition system is 76%. In addition, this paper also develops and verifies the real-time recognition of this system on the embedded platform PYNQ.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
WOS记录号
WOS:000978390700097
EI入藏号
20231013661540
EI主题词
Classification (of information) ; Deep learning ; Feature extraction ; Learning systems
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Information Sources and Analysis:903.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10043466
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/502098
专题工学院_电子与电气工程系
作者单位
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Chenqing Ji,Yujie Lu,Yongjuan Shi,et al. A Fragmented Target Recognition System Based on Zero-Shot Learning[C],2023:01-06.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chenqing Ji]的文章
[Yujie Lu]的文章
[Yongjuan Shi]的文章
百度学术
百度学术中相似的文章
[Chenqing Ji]的文章
[Yujie Lu]的文章
[Yongjuan Shi]的文章
必应学术
必应学术中相似的文章
[Chenqing Ji]的文章
[Yujie Lu]的文章
[Yongjuan Shi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。