中文版 | English
题名

LSBO-NAS: Latent Space Bayesian Optimization for Neural Architecture Search

作者
DOI
发表日期
2022
ISBN
978-1-6654-8642-2
会议录名称
页码
22-27
会议日期
2-4 Dec. 2022
会议地点
Guangzhou, China
摘要
From the perspective of data stream, neural architecture search (NAS) can be formulated as a graph optimization problem. However, many state-of-the-art black-box optimization algorithms, such as Bayesian optimization and simulated annealing, operate in continuous space primarily, which does not match the NAS optimization due to the discreteness of graph structures. To tackle this problem, the latent space Bayesian optimization NAS (LSBO-NAS) algorithm is developed in this paper. In LSBO-NAS, the neural architectures are represented as sequences, and a variational auto-encoder (VAE) is trained to convert the discrete search space of NAS into a continuous latent space by learning the continuous representation of neural architectures. Hereafter, a Bayesian optimization (BO) algorithm, i.e., the tree-structure parzen estimator (TPE) algorithm, is developed to obtain admirable neural architectures. The optimization loop of LSBO-NAS consists of two stages. In the first stage, the BO algorithm generates a preferable architecture representation according to its search strategy. In the second stage, the decoder of VAE decodes the representation into a discrete neural architecture, whose performance evaluation is regarded as the feedback signal for the BO algorithm. The effectiveness of the developed LSBO-NAS is demonstrated on the NAS-Bench-301 benchmark, where the LSBO-NAS achieves a better performance than several NAS baselines.
关键词
学校署名
其他
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10053904
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/502103
专题南方科技大学
作者单位
1.School of Automation, Guangdong University of Technology, Guangzhou, China
2.School of Systems Science, Beijing Normal University, Beijing, China
3.Institute of Control Science and Technology, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Xuan Rao,Songyi Xiao,Jiaxin Li,et al. LSBO-NAS: Latent Space Bayesian Optimization for Neural Architecture Search[C],2022:22-27.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xuan Rao]的文章
[Songyi Xiao]的文章
[Jiaxin Li]的文章
百度学术
百度学术中相似的文章
[Xuan Rao]的文章
[Songyi Xiao]的文章
[Jiaxin Li]的文章
必应学术
必应学术中相似的文章
[Xuan Rao]的文章
[Songyi Xiao]的文章
[Jiaxin Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。