题名 | Evolutionary multiobjective optimization via efficient sampling-based offspring generation |
作者 | |
通讯作者 | Cheng, Ran |
发表日期 | 2023-02-01
|
DOI | |
发表期刊 | |
ISSN | 2199-4536
|
EISSN | 2198-6053
|
卷号 | 9期号:5 |
摘要 | With the rising number of large-scale multiobjective optimization problems from academia and industries, some evolutionary algorithms (EAs) with different decision variable handling strategies have been proposed in recent years. They mainly emphasize the balance between convergence enhancement and diversity maintenance for multiobjective optimization but ignore the local search tailored for large-scale optimization. Consequently, most existing EAs can hardly obtain the global or local optima. To address this issue, we propose an efficient sampling-based offspring generation method for large-scale multiobjective optimization, where convergence enhancement and diversity maintenance, together with ad hoc local search, are considered. First, the decision variables are dynamically classified into two types for solving large-scale decision space in a divide-and-conquer manner. Then, a convergence-related sampling strategy is designed to handle those decision variables related to convergence enhancement. Two additional sampling strategies are proposed for diversity maintenance and local search, respectively. Experimental results on problems with up to 5000 decision variables have indicated the effectiveness of the algorithm in large-scale multiobjective optimization. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China["U20A20306","61906081"]
; National Key Research and Development Program of China[2022YFB2403803]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000938057800002
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/502115 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan 430074, Peoples R China 2.Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automation, Wuhan 430074, Peoples R China 3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain inspired Intelligent, Shenzhen 518055, Peoples R China 4.Bielefeld Univ, Chair Nat Inspired Comp & Engn, D-33615 Bielefeld, Germany |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
He, Cheng,Li, Lianghao,Cheng, Ran,et al. Evolutionary multiobjective optimization via efficient sampling-based offspring generation[J]. Complex & Intelligent Systems,2023,9(5).
|
APA |
He, Cheng,Li, Lianghao,Cheng, Ran,&Jin, Yaochu.(2023).Evolutionary multiobjective optimization via efficient sampling-based offspring generation.Complex & Intelligent Systems,9(5).
|
MLA |
He, Cheng,et al."Evolutionary multiobjective optimization via efficient sampling-based offspring generation".Complex & Intelligent Systems 9.5(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论