题名 | A low-power charge-based integrate-and-fire circuit for binarized-spiking neural network |
作者 | |
通讯作者 | Trinh, Quang-Kien |
发表日期 | 2023-02-01
|
DOI | |
发表期刊 | |
ISSN | 0098-9886
|
EISSN | 1097-007X
|
卷号 | 51期号:7页码:3404-3414 |
摘要 | This paper presents a charge-based integrate-and-fire (IF) circuit for in-memory binary spiking neural networks (BSNNs). The proposed IF circuit can mimic both addition and subtraction operations that permit better incorporation with in-memory XNOR-based synapses to implement the BSNN processing core. To evaluate the proposed design, we have developed a framework that incorporates the circuit's imperfections effects into the system-level simulation. The array circuits use 2T-2J Spin-Transfer-Torque Magnetoresistive RAM (STT-MRAM) based on a 65-nm commercial CMOS and a fitted magnetic tunnel junction (MTJ). The system model has been described in Pytorch to best fit the extracted parameters from circuit levels, including the cover of device nonidealities and process variations. The simulation results show that the proposed design can achieve a performance of 5.10 fJ/synapse and reaches 82.01% classification accuracy for CIFAR-10 under process variation. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Vietnam National Foundation for Science and Technology Development (NAFOSTED)[102.01-2018.310]
; Microelectronic Circuit Centre Ireland[MCCI-2020-07]
|
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000940208600001
|
出版者 | |
EI入藏号 | 20231013674992
|
EI主题词 | Computing power
; Low power electronics
; Magnetic recording
; MRAM devices
; Timing circuits
; Tunnel junctions
|
EI分类号 | Pulse Circuits:713.4
; Data Storage, Equipment and Techniques:722.1
; Computer Peripheral Equipment:722.2
; Digital Computers and Systems:722.4
; Computer Software, Data Handling and Applications:723
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/502139 |
专题 | 工学院_深港微电子学院 |
作者单位 | 1.Le Quy Don Tech Univ, Fac Radioelect Engn, Hanoi, Vietnam 2.Le Quy Don Tech Univ, Inst Syst Integrat, Hanoi, Vietnam 3.Southern Univ Sci & Technol, Sch Microelect, Shenzhen, Peoples R China 4.Univ Coll Dublin, Sch Elect & Elect Engn, Dublin, Ireland |
推荐引用方式 GB/T 7714 |
Duong, Quang-Manh,Trinh, Quang-Kien,Nguyen, Van-Tinh,et al. A low-power charge-based integrate-and-fire circuit for binarized-spiking neural network[J]. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS,2023,51(7):3404-3414.
|
APA |
Duong, Quang-Manh.,Trinh, Quang-Kien.,Nguyen, Van-Tinh.,Dao, Dinh-Ha.,Luong, Duy-Manh.,...&Deepu, John.(2023).A low-power charge-based integrate-and-fire circuit for binarized-spiking neural network.INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS,51(7),3404-3414.
|
MLA |
Duong, Quang-Manh,et al."A low-power charge-based integrate-and-fire circuit for binarized-spiking neural network".INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS 51.7(2023):3404-3414.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论