中文版 | English
题名

A low-power charge-based integrate-and-fire circuit for binarized-spiking neural network

作者
通讯作者Trinh, Quang-Kien
发表日期
2023-02-01
DOI
发表期刊
ISSN
0098-9886
EISSN
1097-007X
卷号51期号:7页码:3404-3414
摘要
This paper presents a charge-based integrate-and-fire (IF) circuit for in-memory binary spiking neural networks (BSNNs). The proposed IF circuit can mimic both addition and subtraction operations that permit better incorporation with in-memory XNOR-based synapses to implement the BSNN processing core. To evaluate the proposed design, we have developed a framework that incorporates the circuit's imperfections effects into the system-level simulation. The array circuits use 2T-2J Spin-Transfer-Torque Magnetoresistive RAM (STT-MRAM) based on a 65-nm commercial CMOS and a fitted magnetic tunnel junction (MTJ). The system model has been described in Pytorch to best fit the extracted parameters from circuit levels, including the cover of device nonidealities and process variations. The simulation results show that the proposed design can achieve a performance of 5.10 fJ/synapse and reaches 82.01% classification accuracy for CIFAR-10 under process variation.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Vietnam National Foundation for Science and Technology Development (NAFOSTED)[102.01-2018.310] ; Microelectronic Circuit Centre Ireland[MCCI-2020-07]
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:000940208600001
出版者
EI入藏号
20231013674992
EI主题词
Computing power ; Low power electronics ; Magnetic recording ; MRAM devices ; Timing circuits ; Tunnel junctions
EI分类号
Pulse Circuits:713.4 ; Data Storage, Equipment and Techniques:722.1 ; Computer Peripheral Equipment:722.2 ; Digital Computers and Systems:722.4 ; Computer Software, Data Handling and Applications:723
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/502139
专题工学院_深港微电子学院
作者单位
1.Le Quy Don Tech Univ, Fac Radioelect Engn, Hanoi, Vietnam
2.Le Quy Don Tech Univ, Inst Syst Integrat, Hanoi, Vietnam
3.Southern Univ Sci & Technol, Sch Microelect, Shenzhen, Peoples R China
4.Univ Coll Dublin, Sch Elect & Elect Engn, Dublin, Ireland
推荐引用方式
GB/T 7714
Duong, Quang-Manh,Trinh, Quang-Kien,Nguyen, Van-Tinh,et al. A low-power charge-based integrate-and-fire circuit for binarized-spiking neural network[J]. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS,2023,51(7):3404-3414.
APA
Duong, Quang-Manh.,Trinh, Quang-Kien.,Nguyen, Van-Tinh.,Dao, Dinh-Ha.,Luong, Duy-Manh.,...&Deepu, John.(2023).A low-power charge-based integrate-and-fire circuit for binarized-spiking neural network.INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS,51(7),3404-3414.
MLA
Duong, Quang-Manh,et al."A low-power charge-based integrate-and-fire circuit for binarized-spiking neural network".INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS 51.7(2023):3404-3414.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Duong, Quang-Manh]的文章
[Trinh, Quang-Kien]的文章
[Nguyen, Van-Tinh]的文章
百度学术
百度学术中相似的文章
[Duong, Quang-Manh]的文章
[Trinh, Quang-Kien]的文章
[Nguyen, Van-Tinh]的文章
必应学术
必应学术中相似的文章
[Duong, Quang-Manh]的文章
[Trinh, Quang-Kien]的文章
[Nguyen, Van-Tinh]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。