中文版 | English
题名

An Investigation of Adaptive Operator Selection in Solving Complex Vehicle Routing Problem

作者
通讯作者Liu, Jialin
DOI
发表日期
2022
会议名称
19th Pacific Rim International Conference on Artificial Intelligence (PRICAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-20861-4
会议录名称
卷号
13629
会议日期
NOV 10-13, 2022
会议地点
null,Shanghai,PEOPLES R CHINA
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Search operators play an important role in meta-heuristics. There are typically a variety of search operators available for solving a problem, and the selection and order of using the operators can greatly affect the algorithm performance. Adaptive operator selection (AOS) has been proposed to select operators during optimisation dynamically and adaptively. However, most existing studies focus on real-value optimisation problems, while combinatorial optimisation problems, especially complex routing problems, are seldom considered. Motivated by the effectiveness of AOS on real-value optimisation problems and the urgent need of efficiency in solving real routing problems, this paper investigates AOS in complex routing problems obtained from real-world scenarios, the multi-depot multi-disposal-facility multi-trip capacitated vehicle routing problems (M3CVRPs). Specifically, the stateless AOS, arguable the most classic, intuitive and commonly used category of AOS approaches, is integrated into the region-focused local search (RFLS), the state-ofthe-art algorithm for solving M3CVRPs. Unexpectedly and yet within understanding, experimental results show that the original RFLS performs better than the RFLS embedded with stateless AOS approaches. To determine the causes, a novel neighbourhood analysis is conducted to investigate the characteristics of M3CVRP and the factors that affect the performance of the AOS. Experimental results indicate that the momentum assumption of stateless AOS, good operators in history will also work well in current stage, is not satisfied within most of the time during the optimisation of the complex problem, leading to the unstable performance of operators and the failure of stateless AOS.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61906083]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号
WOS:000897031800041
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/503988
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol SUSTech, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
2.Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6012, New Zealand
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Pei, Jiyuan,Mei, Yi,Liu, Jialin,et al. An Investigation of Adaptive Operator Selection in Solving Complex Vehicle Routing Problem[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pei, Jiyuan]的文章
[Mei, Yi]的文章
[Liu, Jialin]的文章
百度学术
百度学术中相似的文章
[Pei, Jiyuan]的文章
[Mei, Yi]的文章
[Liu, Jialin]的文章
必应学术
必应学术中相似的文章
[Pei, Jiyuan]的文章
[Mei, Yi]的文章
[Liu, Jialin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。