中文版 | English
题名

Fast video facial expression recognition by deeply tensor-compressed lstm neural network on mobile device

作者
DOI
发表日期
2019
会议录名称
页码
298-300
会议地点
Arlington, VA, United states
出版者
摘要
Poster: Mobile devices usually suffer from limited computation and storage resource which seriously hinders them from deep neural network applications. In this paper, we introduce a deeply tensor-compressed LSTM neural network for fast facial expression recognition (FER) in videos on mobile devices. Firstly, a spatio-temporal FER LSTM model is built by extracting time-series feature maps from facial clips. The LSTM model is further deeply compressed with tensorization. Based on dataset of Acted Facial Expression in Wild (AFEW) 7.0, experimental results show that the proposed method achieves 55.60% classification accuracy; and significantly compresses the size of network model by 219×. Our work is further implemented on RK3399Pro IoT device with Neural Process Engine, and the runtime of feature extraction part can be reduced by 12.83× with only 7.73W power consumption.
© 2019 Copyright held by the owner/author(s).
学校署名
其他
收录类别
EI入藏号
20195007834055
EI主题词
Classification (of information) ; Deep learning ; Deep neural networks ; Edge computing ; Face recognition ; Mobile computing ; Tensors
EI分类号
Telecommunication; Radar, Radio and Television:716 ; Information Theory and Signal Processing:716.1 ; Algebra:921.1
来源库
EV Compendex
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50836
专题工学院_深港微电子学院
作者单位
1.Shanghai Jiao Tong University, Shanghai, China
2.Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Zhen, Peining,Liu, Bin,Cheng, Yuan,et al. Fast video facial expression recognition by deeply tensor-compressed lstm neural network on mobile device[C]:Association for Computing Machinery, Inc,2019:298-300.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhen, Peining]的文章
[Liu, Bin]的文章
[Cheng, Yuan]的文章
百度学术
百度学术中相似的文章
[Zhen, Peining]的文章
[Liu, Bin]的文章
[Cheng, Yuan]的文章
必应学术
必应学术中相似的文章
[Zhen, Peining]的文章
[Liu, Bin]的文章
[Cheng, Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。