中文版 | English
题名

NISU: A novel index structure on uncertain data in large-scale publish/subscribe systems

作者
通讯作者Li, Qing
DOI
发表日期
2019
ISBN
978-1-7281-2059-1
会议录名称
页码
1205-1211
会议日期
10-12 Aug. 2019
会议地点
Zhangjiajie, China
出版者
摘要

Publish/Subscribe Systems are widely used in messaging systems due to loose coupling and asynchronous. As the number of objects participating in the message system increases, there has also been a spurt in the number of messages, which brings great challenges to the traditional event matching methods. After studying the status quo of event matching in the case of large-scale Uncertain Data, we proposed a simple solution named NISU(New Index Structure on Uncertain Data) for efficient event matching. In the proposed scheme, we use P-Skyline to filter unrelated events and subscriptions, then divide the attribute space into several attribute subspace in order to filter unrelated subscriptions, and finally make use of constraint satisfaction criterion for event matching. In addition, in the event matching process, we use confidence to relax the event matching criteria, avoiding the problem of inaccurate matching caused by Uncertain Data set. The experimental results show that the NISU is rapid, low consumed and efficient on large-scale Uncertain Data set.
© 2019 IEEE.

关键词
学校署名
通讯
相关链接[IEEE记录]
收录类别
资助项目
[No.JCYJ20170307153157440] ; [No.ZDSYS20140509172959989] ; [2018B010113001] ; National Natural Science Foundation of China[61802220]
EI入藏号
20194307563876
EI主题词
Message Passing ; Pattern Matching ; Smart City ; Uncertainty Analysis
EI分类号
Computer Programming:723.1 ; Probability Theory:922.1
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8855597
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50846
专题南方科技大学
未来网络研究院
作者单位
1.Graduate School at Shenzhen, Tsinghua University, Shenzhen; 518055, China
2.Southern University of Science and Technology, Shenzhen; 518055, China
3.PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen; 518055, China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Zhou, Huimin,Li, Li,Li, Qing,et al. NISU: A novel index structure on uncertain data in large-scale publish/subscribe systems[C]:Institute of Electrical and Electronics Engineers Inc.,2019:1205-1211.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou, Huimin]的文章
[Li, Li]的文章
[Li, Qing]的文章
百度学术
百度学术中相似的文章
[Zhou, Huimin]的文章
[Li, Li]的文章
[Li, Qing]的文章
必应学术
必应学术中相似的文章
[Zhou, Huimin]的文章
[Li, Li]的文章
[Li, Qing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。