题名 | NISU: A novel index structure on uncertain data in large-scale publish/subscribe systems |
作者 | |
通讯作者 | Li, Qing |
DOI | |
发表日期 | 2019
|
ISBN | 978-1-7281-2059-1
|
会议录名称 | |
页码 | 1205-1211
|
会议日期 | 10-12 Aug. 2019
|
会议地点 | Zhangjiajie, China
|
出版者 | |
摘要 | Publish/Subscribe Systems are widely used in messaging systems due to loose coupling and asynchronous. As the number of objects participating in the message system increases, there has also been a spurt in the number of messages, which brings great challenges to the traditional event matching methods. After studying the status quo of event matching in the case of large-scale Uncertain Data, we proposed a simple solution named NISU(New Index Structure on Uncertain Data) for efficient event matching. In the proposed scheme, we use P-Skyline to filter unrelated events and subscriptions, then divide the attribute space into several attribute subspace in order to filter unrelated subscriptions, and finally make use of constraint satisfaction criterion for event matching. In addition, in the event matching process, we use confidence to relax the event matching criteria, avoiding the problem of inaccurate matching caused by Uncertain Data set. The experimental results show that the NISU is rapid, low consumed and efficient on large-scale Uncertain Data set. |
关键词 | |
学校署名 | 通讯
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | [No.JCYJ20170307153157440]
; [No.ZDSYS20140509172959989]
; [2018B010113001]
; National Natural Science Foundation of China[61802220]
|
EI入藏号 | 20194307563876
|
EI主题词 | Message Passing
; Pattern Matching
; Smart City
; Uncertainty Analysis
|
EI分类号 | Computer Programming:723.1
; Probability Theory:922.1
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8855597 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50846 |
专题 | 南方科技大学 未来网络研究院 |
作者单位 | 1.Graduate School at Shenzhen, Tsinghua University, Shenzhen; 518055, China 2.Southern University of Science and Technology, Shenzhen; 518055, China 3.PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen; 518055, China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhou, Huimin,Li, Li,Li, Qing,et al. NISU: A novel index structure on uncertain data in large-scale publish/subscribe systems[C]:Institute of Electrical and Electronics Engineers Inc.,2019:1205-1211.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论