题名 | Non-elitist evolutionary multi-objective optimizers revisited |
作者 | |
通讯作者 | Ishibuchi, Hisao |
DOI | |
发表日期 | 2019
|
会议录名称 | |
页码 | 612-619
|
会议地点 | Prague, Czech republic
|
出版地 | 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
|
出版者 | |
摘要 | Since around 2000, it has been considered that elitist evolutionary multi-objective optimization algorithms (EMOAs) always outperform non-elitist EMOAs. This paper revisits the performance of non-elitist EMOAs for bi-objective continuous optimization when using an unbounded external archive. This paper examines the performance of EMOAs with two elitist and one non-elitist environmental selections. The performance of EMOAs is evaluated on the bi-objective BBOB problem suite provided by the COCO platform. In contrast to conventional wisdom, results show that non-elitist EMOAs with particular crossover methods perform significantly well on the bi-objective BBOB problems with many decision variables when using the unbounded external archive. This paper also analyzes the properties of the non-elitist selection. © 2019 Association for Computing Machinery. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075]
|
WOS研究方向 | Computer Science
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Operations Research & Management Science
|
WOS记录号 | WOS:000523218400073
|
EI入藏号 | 20193807458977
|
EI主题词 | Computer science
; Evolutionary algorithms
|
EI分类号 | Optimization Techniques:921.5
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50848 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving Intelligent Systems of Guangdong Province, Department of Computer Science and Engineering, Southern University of Science and Technology, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Tanabe, Ryoji,Ishibuchi, Hisao. Non-elitist evolutionary multi-objective optimizers revisited[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:Association for Computing Machinery, Inc,2019:612-619.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论