中文版 | English
题名

Algorithm portfolio for individual-based surrogate-assisted evolutionary algorithms

作者
通讯作者Yao, Xin
DOI
发表日期
2019
会议录名称
页码
943-950
会议地点
Prague, Czech republic
出版地
1515 BROADWAY, NEW YORK, NY 10036-9998 USA
出版者
摘要
Surrogate-assisted evolutionary algorithms (SAEAs) are powerful optimisation tools for computationally expensive problems (CEPs). However, a randomly selected algorithm may fail in solving unknown problems due to no free lunch theorems, and it will cause more computational resource if we re-run the algorithm or try other algorithms to get a much solution, which is more serious in CEPs. In this paper, we consider an algorithm portfolio for SAEAs to reduce the risk of choosing an inappropriate algorithm for CEPs. We propose two portfolio frameworks for very expensive problems in which the maximal number of fitness evaluations is only 5 times of the problem's dimension. One framework named Par-IBSAEA runs all algorithm candidates in parallel and a more sophisticated framework named UCB-IBSAEA employs the Upper Confidence Bound (UCB) policy from reinforcement learning to help select the most appropriate algorithm at each iteration. An effective reward definition is proposed for the UCB policy. We consider three state-of-the-art individual-based SAEAs on different problems and compare them to the portfolios built from their instances on several benchmark problems given limited computation budgets. Our experimental studies demonstrate that our proposed portfolio frameworks significantly outperform any single algorithm on the set of benchmark problems.
© 2019 Association for Computing Machinery.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Basic Research Program of China (973 Program)[2017YFC0804003]
WOS研究方向
Computer Science ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Operations Research & Management Science
WOS记录号
WOS:000523218400111
EI入藏号
20193807458895
EI主题词
Benchmarking ; Budget control ; Computation theory ; Iterative methods ; Reinforcement learning
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Numerical Methods:921.6
来源库
EV Compendex
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50849
专题工学院_计算机科学与工程系
作者单位
Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving Intelligent Systems of Guangdong Province, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Tong, Hao,Liu, Jialin,Yao, Xin. Algorithm portfolio for individual-based surrogate-assisted evolutionary algorithms[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:Association for Computing Machinery, Inc,2019:943-950.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1145@3321707.3321(852KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tong, Hao]的文章
[Liu, Jialin]的文章
[Yao, Xin]的文章
百度学术
百度学术中相似的文章
[Tong, Hao]的文章
[Liu, Jialin]的文章
[Yao, Xin]的文章
必应学术
必应学术中相似的文章
[Tong, Hao]的文章
[Liu, Jialin]的文章
[Yao, Xin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3321707.3321715.pdf
格式: Adobe PDF
文件名: 10.1145@3321707.3321715.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。