中文版 | English
题名

Stroke data analysis through a HVN visual mining platform

作者
DOI
发表日期
2019
ISSN
1550-6037
EISSN
2375-0138
ISBN
978-1-7281-2851-1
会议录名称
页码
1-6
会议日期
16-19 July 2019
会议地点
Adelaide, SA, Australia
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Today there are abounding collected data in cases of various diseases in medical sciences. Physicians can access new findings about diseases and procedures in dealing with them by probing these data. Clinical data is a collection of large and complex datasets that commonly appear in multidimensional data formats. It has been recognized as a big challenge in modern data analysis tasks. Therefore, there is an urgent need to find new and effective techniques to deal with such huge datasets. This paper presents an application of a new visual data mining platform for visual analysis of the stroke data for predicting the levels of risk to those people who have the similar characteristics of the stroke patients. The visualization platform uses a hierarchical clustering algorithm to aggregate the data and map coherent groups of data-points to the same visual elements-curved 'super-polylines' that significantly reduces the visual complexity of the visualization. On the other hand, to enable users to interactively manipulate data items (super-polylines) in the parallel coordinates geometry through the mouse rollover and clicking, we created many 'virtual nodes' along the multi-axis of the visualization based on the hierarchical structure of the value range of selected data attributes. The experimental result shows that we can easily verify research hypothesis and reach to the conclusion of research questions through human-data & human-algorithm interactions by using this visual platform with a fully transparency manner of data processing.
© 2019 IEEE.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:000538679200001
EI入藏号
20193907463261
EI主题词
Behavioral research ; Clustering algorithms ; Data Analytics ; Data mining ; Decision making ; Information systems ; Large dataset ; Mammals ; Risk assessment ; Visualization
EI分类号
Data Processing and Image Processing:723.2 ; Information Science:903 ; Management:912.2 ; Accidents and Accident Prevention:914.1 ; Social Sciences:971
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8812020
引用统计
被引频次[WOS]:17
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50860
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.University of Technology, Sydney, Australia
2.Southern University of Science and Technology, China
3.University of Western Sydney, Australia
推荐引用方式
GB/T 7714
Huang, Mao Lin,Yue, Zhixiong,Nguyen, Quang Vinh,et al. Stroke data analysis through a HVN visual mining platform[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1-6.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Mao Lin]的文章
[Yue, Zhixiong]的文章
[Nguyen, Quang Vinh]的文章
百度学术
百度学术中相似的文章
[Huang, Mao Lin]的文章
[Yue, Zhixiong]的文章
[Nguyen, Quang Vinh]的文章
必应学术
必应学术中相似的文章
[Huang, Mao Lin]的文章
[Yue, Zhixiong]的文章
[Nguyen, Quang Vinh]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。