题名 | Stroke data analysis through a HVN visual mining platform |
作者 | |
DOI | |
发表日期 | 2019
|
ISSN | 1550-6037
|
EISSN | 2375-0138
|
ISBN | 978-1-7281-2851-1
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 16-19 July 2019
|
会议地点 | Adelaide, SA, Australia
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | Today there are abounding collected data in cases of various diseases in medical sciences. Physicians can access new findings about diseases and procedures in dealing with them by probing these data. Clinical data is a collection of large and complex datasets that commonly appear in multidimensional data formats. It has been recognized as a big challenge in modern data analysis tasks. Therefore, there is an urgent need to find new and effective techniques to deal with such huge datasets. This paper presents an application of a new visual data mining platform for visual analysis of the stroke data for predicting the levels of risk to those people who have the similar characteristics of the stroke patients. The visualization platform uses a hierarchical clustering algorithm to aggregate the data and map coherent groups of data-points to the same visual elements-curved 'super-polylines' that significantly reduces the visual complexity of the visualization. On the other hand, to enable users to interactively manipulate data items (super-polylines) in the parallel coordinates geometry through the mouse rollover and clicking, we created many 'virtual nodes' along the multi-axis of the visualization based on the hierarchical structure of the value range of selected data attributes. The experimental result shows that we can easily verify research hypothesis and reach to the conclusion of research questions through human-data & human-algorithm interactions by using this visual platform with a fully transparency manner of data processing. © 2019 IEEE. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
|
WOS记录号 | WOS:000538679200001
|
EI入藏号 | 20193907463261
|
EI主题词 | Behavioral research
; Clustering algorithms
; Data Analytics
; Data mining
; Decision making
; Information systems
; Large dataset
; Mammals
; Risk assessment
; Visualization
|
EI分类号 | Data Processing and Image Processing:723.2
; Information Science:903
; Management:912.2
; Accidents and Accident Prevention:914.1
; Social Sciences:971
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8812020 |
引用统计 |
被引频次[WOS]:17
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50860 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.University of Technology, Sydney, Australia 2.Southern University of Science and Technology, China 3.University of Western Sydney, Australia |
推荐引用方式 GB/T 7714 |
Huang, Mao Lin,Yue, Zhixiong,Nguyen, Quang Vinh,et al. Stroke data analysis through a HVN visual mining platform[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论