题名 | Chronological classification of ancient paintings of mogao grottoes using convolutional neural networks |
作者 | |
通讯作者 | Gong, Yi |
DOI | |
发表日期 | 2019
|
ISBN | 978-1-7281-3661-5
|
会议录名称 | |
页码 | 51-55
|
会议日期 | 19-21 July 2019
|
会议地点 | Wuxi, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Mogao Grottoes are known as one of the three famous ancient Buddhist sculptural sites of China, which contain some of finest Buddhist paintings spanning a period of 1,000 years. Chronological classification of the ancient Buddhist paintings of Mogao Grottoes can help archaeologists and culture researchers to study the humanities, customs and economy of the corresponding eras. In this paper, this paper first perform an initial study on the effect of three state-of-the-art convolutional neural network based methods (AlexNet, VGG and ResNet) on chronological classification of paintings of Mogao Grottoes, and then propose a new network by replacing the last average pooling layer of ResNet-50 with a sequential layers. Experiments demonstrate that our method achieves higher classification accuracy than the three models and two existing chronological classification methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Engineering
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Software Engineering
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000557898200011
|
EI入藏号 | 20194507628848
|
EI主题词 | Caves
; Convolution
; Image Processing
|
EI分类号 | Geology:481.1
; Information Theory And Signal Processing:716.1
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8868392 |
引用统计 |
被引频次[WOS]:5
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50862 |
专题 | 工学院_电子与电气工程系 前沿与交叉科学研究院 |
作者单位 | 1.Department of Electrical and Electronic Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China 2.PengCheng Laboratory, Southern University of Science and Technology (SUSTech), Shenzhen, China 3.Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China 4.Shenzhen Engineering Laboratory of Intelligent Information Processing, IoT Southern University of Science and Technology (SUSTech), Shenzhen, China |
第一作者单位 | 电子与电气工程系; 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Li, Xiangyu,Zeng, Yuan,Gong, Yi. Chronological classification of ancient paintings of mogao grottoes using convolutional neural networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:51-55.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论