中文版 | English
题名

Chronological classification of ancient paintings of mogao grottoes using convolutional neural networks

作者
通讯作者Gong, Yi
DOI
发表日期
2019
ISBN
978-1-7281-3661-5
会议录名称
页码
51-55
会议日期
19-21 July 2019
会议地点
Wuxi, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Mogao Grottoes are known as one of the three famous ancient Buddhist sculptural sites of China, which contain some of finest Buddhist paintings spanning a period of 1,000 years. Chronological classification of the ancient Buddhist paintings of Mogao Grottoes can help archaeologists and culture researchers to study the humanities, customs and economy of the corresponding eras. In this paper, this paper first perform an initial study on the effect of three state-of-the-art convolutional neural network based methods (AlexNet, VGG and ResNet) on chronological classification of paintings of Mogao Grottoes, and then propose a new network by replacing the last average pooling layer of ResNet-50 with a sequential layers. Experiments demonstrate that our method achieves higher classification accuracy than the three models and two existing chronological classification methods.
© 2019 IEEE.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology
WOS记录号
WOS:000557898200011
EI入藏号
20194507628848
EI主题词
Caves ; Convolution ; Image Processing
EI分类号
Geology:481.1 ; Information Theory And Signal Processing:716.1
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8868392
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50862
专题工学院_电子与电气工程系
前沿与交叉科学研究院
作者单位
1.Department of Electrical and Electronic Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
2.PengCheng Laboratory, Southern University of Science and Technology (SUSTech), Shenzhen, China
3.Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, China
4.Shenzhen Engineering Laboratory of Intelligent Information Processing, IoT Southern University of Science and Technology (SUSTech), Shenzhen, China
第一作者单位电子与电气工程系;  南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Li, Xiangyu,Zeng, Yuan,Gong, Yi. Chronological classification of ancient paintings of mogao grottoes using convolutional neural networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:51-55.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Xiangyu]的文章
[Zeng, Yuan]的文章
[Gong, Yi]的文章
百度学术
百度学术中相似的文章
[Li, Xiangyu]的文章
[Zeng, Yuan]的文章
[Gong, Yi]的文章
必应学术
必应学术中相似的文章
[Li, Xiangyu]的文章
[Zeng, Yuan]的文章
[Gong, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。