中文版 | English
题名

Learning to Solve Capacitated Arc Routing Problems by Policy Gradient

作者
通讯作者Li, Guiying
DOI
发表日期
2019
会议名称
IEEE Congress on Evolutionary Computation
ISBN
978-1-7281-2154-3
会议录名称
页码
1291-1298
会议日期
June 10-13, 2019
会议地点
Wellington, New zealand
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Most heuristic algorithms for NP-hard combinatorial optimization problems require expertise in both the problem domains and heuristic methods. Recent research has begun to apply Deep Neural Network to learning heuristics for combinatorial optimization problems automatically. These works mainly focus problems with simple formulations, such as Travelling Salesman Problem and Vehicle Routing Problem defined on Euclidean graphs. This paper presents a novel deep reinforcement learning based algorithm for the Capacitated Arc Routing Problem which is defined on more complex non-Euclidean information graphs. The proposed approach is a combination of a Graph Convolutional Network and two encoder-decoder models. By regrading the negative objective values of CARP instances as the rewards, the proposed method optimizes the parameters with REINFORCE algorithm. In empirical experiments, the proposed method is able to generate solutions approximate optimal solutions well with much less time than heuristic algorithms.
© 2019 IEEE.

关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284]
WOS研究方向
Engineering ; Mathematical & Computational Biology
WOS类目
Engineering, Electrical & Electronic ; Mathematical & Computational Biology
WOS记录号
WOS:000502087101042
EI入藏号
20193507374109
EI主题词
Combinatorial Optimization ; Deep Neural Networks ; Evolutionary Algorithms ; Heuristic Algorithms ; Machine Learning ; Network Routing ; Optimization ; Reinforcement Learning ; Traveling Salesman Problem ; Vehicle Routing
EI分类号
Computer Programming:723.1 ; Artificial Intelligence:723.4 ; Optimization Techniques:921.5
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790295
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50873
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
2.Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, Shenzhen, China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Li, Han,Li, Guiying. Learning to Solve Capacitated Arc Routing Problems by Policy Gradient[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1291-1298.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2019_cec_nsrl.pdf(917KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Han]的文章
[Li, Guiying]的文章
百度学术
百度学术中相似的文章
[Li, Han]的文章
[Li, Guiying]的文章
必应学术
必应学术中相似的文章
[Li, Han]的文章
[Li, Guiying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。