题名 | Learning to Solve Capacitated Arc Routing Problems by Policy Gradient |
作者 | |
通讯作者 | Li, Guiying |
DOI | |
发表日期 | 2019
|
会议名称 | IEEE Congress on Evolutionary Computation
|
ISBN | 978-1-7281-2154-3
|
会议录名称 | |
页码 | 1291-1298
|
会议日期 | June 10-13, 2019
|
会议地点 | Wellington, New zealand
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Most heuristic algorithms for NP-hard combinatorial optimization problems require expertise in both the problem domains and heuristic methods. Recent research has begun to apply Deep Neural Network to learning heuristics for combinatorial optimization problems automatically. These works mainly focus problems with simple formulations, such as Travelling Salesman Problem and Vehicle Routing Problem defined on Euclidean graphs. This paper presents a novel deep reinforcement learning based algorithm for the Capacitated Arc Routing Problem which is defined on more complex non-Euclidean information graphs. The proposed approach is a combination of a Graph Convolutional Network and two encoder-decoder models. By regrading the negative objective values of CARP instances as the rewards, the proposed method optimizes the parameters with REINFORCE algorithm. In empirical experiments, the proposed method is able to generate solutions approximate optimal solutions well with much less time than heuristic algorithms. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284]
|
WOS研究方向 | Engineering
; Mathematical & Computational Biology
|
WOS类目 | Engineering, Electrical & Electronic
; Mathematical & Computational Biology
|
WOS记录号 | WOS:000502087101042
|
EI入藏号 | 20193507374109
|
EI主题词 | Combinatorial Optimization
; Deep Neural Networks
; Evolutionary Algorithms
; Heuristic Algorithms
; Machine Learning
; Network Routing
; Optimization
; Reinforcement Learning
; Traveling Salesman Problem
; Vehicle Routing
|
EI分类号 | Computer Programming:723.1
; Artificial Intelligence:723.4
; Optimization Techniques:921.5
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790295 |
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50873 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.School of Computer Science and Technology, University of Science and Technology of China, Hefei, China 2.Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, Shenzhen, China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Li, Han,Li, Guiying. Learning to Solve Capacitated Arc Routing Problems by Policy Gradient[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1291-1298.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2019_cec_nsrl.pdf(917KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论