题名 | Cooperative Co-evolution with Soft Grouping for Large Scale Global Optimization |
作者 | |
通讯作者 | Li, Bin |
DOI | |
发表日期 | 2019
|
ISBN | 978-1-7281-2154-3
|
会议录名称 | |
页码 | 318-325
|
会议日期 | 10-13 June 2019
|
会议地点 | Wellington, New zealand
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Cooperative Co-evolution (CC) is a promising framework to scale up conventional evolutionary algorithms for large scale global optimization (LSGO) problems. However, how to group decision variables is still a problem while there is no prior knowledge about the dependence relationship between variables. In this paper, a new kind of CC algorithm called Soft Grouping Cooperative Co-evolution (SGCC) is proposed to tackle the problem. Instead of explicitly dividing variables into multiple groups, the algorithm softly assigns variables into multiple groups by controlling the degree of membership of variables to the groups. In this work, the degree of membership is controlled by a probability distribution function. The experimental investigation shows that Soft Grouping CC is better than the explicit grouping CC on partially separable and non-separable problems. © 2019 IEEE. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61836011]
|
WOS研究方向 | Engineering
; Mathematical & Computational Biology
|
WOS类目 | Engineering, Electrical & Electronic
; Mathematical & Computational Biology
|
WOS记录号 | WOS:000502087100043
|
EI入藏号 | 20193507373746
|
EI主题词 | Distribution functions
; Global optimization
|
EI分类号 | Optimization Techniques:921.5
; Probability Theory:922.1
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790053 |
引用统计 |
被引频次[WOS]:17
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50877 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Data Science, University of Science and Technology of China, Hefei, China 2.CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application Systems, University of Science and Technology of China, Hefei, China 3.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Liu, Weiming,Zhou, Yinda,Li, Bin,et al. Cooperative Co-evolution with Soft Grouping for Large Scale Global Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:318-325.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论