题名 | Surrogate-Assisted Expensive Many-Objective Optimization by Model Fusion |
作者 | |
通讯作者 | Cheng, Ran |
DOI | |
发表日期 | 2019
|
ISBN | 978-1-7281-2154-3
|
会议录名称 | |
页码 | 1672-1679
|
会议日期 | 10-13 June 2019
|
会议地点 | Wellington, New zealand
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Surrogate-assisted evolutionary algorithms have played an important role in expensive optimization where a small number of real-objective function evaluations are allowed. Usually, the surrogate models are used for the same purpose, e.g., to approximate the real-objective function or the aggregation fitness function. However, there is little work on surrogate-assisted optimization by model fusion, i.e., different surrogate models are fused for different purposes to improve the performance of the algorithm. In this work, we propose a surrogate-assisted approach by model fusion for solving expensive many-objective optimization problems, in which the Kriging assisted objective function approximation method is fused with the classifier assisted approach. The proposed algorithm is compared with some state-of-the-art surrogate-assisted algorithms on DTLZ problems and a real-world problem, and some encouraging results have been achieved by our proposed model fusion based approach. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Science and Technology Innovation Committee Foundation of Shenzhen grant[ZDSYS201703031748284]
|
WOS研究方向 | Engineering
; Mathematical & Computational Biology
|
WOS类目 | Engineering, Electrical & Electronic
; Mathematical & Computational Biology
|
WOS记录号 | WOS:000502087101092
|
EI入藏号 | 20193507373889
|
EI主题词 | Classification (Of Information)
; Interpolation
|
EI分类号 | Information Theory And Signal Processing:716.1
; Numerical Methods:921.6
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790155 |
引用统计 |
被引频次[WOS]:6
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50879 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
He, Cheng,Cheng, Ran,Jin, Yaochu,et al. Surrogate-Assisted Expensive Many-Objective Optimization by Model Fusion[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1672-1679.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
PID5814837.pdf(659KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论