中文版 | English
题名

Surrogate-Assisted Expensive Many-Objective Optimization by Model Fusion

作者
通讯作者Cheng, Ran
DOI
发表日期
2019
ISBN
978-1-7281-2154-3
会议录名称
页码
1672-1679
会议日期
10-13 June 2019
会议地点
Wellington, New zealand
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Surrogate-assisted evolutionary algorithms have played an important role in expensive optimization where a small number of real-objective function evaluations are allowed. Usually, the surrogate models are used for the same purpose, e.g., to approximate the real-objective function or the aggregation fitness function. However, there is little work on surrogate-assisted optimization by model fusion, i.e., different surrogate models are fused for different purposes to improve the performance of the algorithm. In this work, we propose a surrogate-assisted approach by model fusion for solving expensive many-objective optimization problems, in which the Kriging assisted objective function approximation method is fused with the classifier assisted approach. The proposed algorithm is compared with some state-of-the-art surrogate-assisted algorithms on DTLZ problems and a real-world problem, and some encouraging results have been achieved by our proposed model fusion based approach.
© 2019 IEEE.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Science and Technology Innovation Committee Foundation of Shenzhen grant[ZDSYS201703031748284]
WOS研究方向
Engineering ; Mathematical & Computational Biology
WOS类目
Engineering, Electrical & Electronic ; Mathematical & Computational Biology
WOS记录号
WOS:000502087101092
EI入藏号
20193507373889
EI主题词
Classification (Of Information) ; Interpolation
EI分类号
Information Theory And Signal Processing:716.1 ; Numerical Methods:921.6
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790155
引用统计
被引频次[WOS]:6
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50879
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
He, Cheng,Cheng, Ran,Jin, Yaochu,et al. Surrogate-Assisted Expensive Many-Objective Optimization by Model Fusion[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1672-1679.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
PID5814837.pdf(659KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He, Cheng]的文章
[Cheng, Ran]的文章
[Jin, Yaochu]的文章
百度学术
百度学术中相似的文章
[He, Cheng]的文章
[Cheng, Ran]的文章
[Jin, Yaochu]的文章
必应学术
必应学术中相似的文章
[He, Cheng]的文章
[Cheng, Ran]的文章
[Jin, Yaochu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。