中文版 | English
题名

Lightweight Evolution Strategies for Nanoswimmers-oriented in Vivo Computation

作者
DOI
发表日期
2019
ISBN
978-1-7281-2154-3
会议录名称
页码
866-872
会议日期
10-13 June 2019
会议地点
Wellington, New zealand
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
We propose two novel evolution strategies of swarm intelligence for nanoswimmer-oriented in vivo computation, which corresponds to the computing model of the direct targeting strategy (DTS) where externally manipulable magnetic nanoswimmers are employed for cancer detection. In the DTS, the nanoswimmers move in the high-risk tissue region guided by an external magnetic field to search for the early cancer that cannot be visualized using traditional imaging modalities due to their limited resolution. Subject to the constraint of the state-of-the-art controlling technology which can only generate a uniform magnetic field to steer all the nanoswimmers simultaneously, we revisit the conventional gravitational search algorithm (GSA) and propose the orthokinetic gravitational search algorithm (OGSA) to carry out the DTS. Furthermore, we propose the general evolution strategy (G-ES) and the weak priority evolution strategy (WP-ES) and apply them to the OGSA for the path planning of magnetic nanoswimmers. To prove the superiority of the OGSA in the DTS, we present some simulation examples and make comparison with the "brute-force" search, which corresponds to the traditional systemic targeting strategy. Furthermore, we compare the performance of WP-ES and G-ES in the OGSA. It is found that the WP-ES can improve the performance of swarm intelligence algorithms (e.g., GSA) in the DTS.
© 2019 IEEE.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Engineering ; Mathematical & Computational Biology
WOS类目
Engineering, Electrical & Electronic ; Mathematical & Computational Biology
WOS记录号
WOS:000502087100115
EI入藏号
20193507373674
EI主题词
Diseases ; Learning algorithms ; Magnetic fields ; Motion planning ; Swarm intelligence
EI分类号
Magnetism: Basic Concepts and Phenomena:701.2
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790356
引用统计
被引频次[WOS]:12
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50882
专题工学院_计算机科学与工程系
作者单位
1.Harbin Institute of Technology, Harbin, China
2.Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
3.University of Electronic Science and Technology of China, Chengdu, China
4.University of Waikato, Hamilton, New Zealand
5.Victoria University of Wellington, Wellington, New Zealand
第一作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Shi, Shaolong,Chen, Yifan,Yao, Xin,et al. Lightweight Evolution Strategies for Nanoswimmers-oriented in Vivo Computation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:866-872.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shi, Shaolong]的文章
[Chen, Yifan]的文章
[Yao, Xin]的文章
百度学术
百度学术中相似的文章
[Shi, Shaolong]的文章
[Chen, Yifan]的文章
[Yao, Xin]的文章
必应学术
必应学术中相似的文章
[Shi, Shaolong]的文章
[Chen, Yifan]的文章
[Yao, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。