题名 | Lightweight Evolution Strategies for Nanoswimmers-oriented in Vivo Computation |
作者 | |
DOI | |
发表日期 | 2019
|
ISBN | 978-1-7281-2154-3
|
会议录名称 | |
页码 | 866-872
|
会议日期 | 10-13 June 2019
|
会议地点 | Wellington, New zealand
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | We propose two novel evolution strategies of swarm intelligence for nanoswimmer-oriented in vivo computation, which corresponds to the computing model of the direct targeting strategy (DTS) where externally manipulable magnetic nanoswimmers are employed for cancer detection. In the DTS, the nanoswimmers move in the high-risk tissue region guided by an external magnetic field to search for the early cancer that cannot be visualized using traditional imaging modalities due to their limited resolution. Subject to the constraint of the state-of-the-art controlling technology which can only generate a uniform magnetic field to steer all the nanoswimmers simultaneously, we revisit the conventional gravitational search algorithm (GSA) and propose the orthokinetic gravitational search algorithm (OGSA) to carry out the DTS. Furthermore, we propose the general evolution strategy (G-ES) and the weak priority evolution strategy (WP-ES) and apply them to the OGSA for the path planning of magnetic nanoswimmers. To prove the superiority of the OGSA in the DTS, we present some simulation examples and make comparison with the "brute-force" search, which corresponds to the traditional systemic targeting strategy. Furthermore, we compare the performance of WP-ES and G-ES in the OGSA. It is found that the WP-ES can improve the performance of swarm intelligence algorithms (e.g., GSA) in the DTS. © 2019 IEEE. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Program for University Key Laboratory of Guangdong Province[2017KSYS008]
|
WOS研究方向 | Engineering
; Mathematical & Computational Biology
|
WOS类目 | Engineering, Electrical & Electronic
; Mathematical & Computational Biology
|
WOS记录号 | WOS:000502087100115
|
EI入藏号 | 20193507373674
|
EI主题词 | Diseases
; Learning algorithms
; Magnetic fields
; Motion planning
; Swarm intelligence
|
EI分类号 | Magnetism: Basic Concepts and Phenomena:701.2
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790356 |
引用统计 |
被引频次[WOS]:12
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50882 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Harbin Institute of Technology, Harbin, China 2.Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 3.University of Electronic Science and Technology of China, Chengdu, China 4.University of Waikato, Hamilton, New Zealand 5.Victoria University of Wellington, Wellington, New Zealand |
第一作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Shi, Shaolong,Chen, Yifan,Yao, Xin,et al. Lightweight Evolution Strategies for Nanoswimmers-oriented in Vivo Computation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:866-872.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论