中文版 | English
题名

Voronoi-based Efficient Surrogate-assisted Evolutionary Algorithm for Very Expensive Problems

作者
DOI
发表日期
2019
ISBN
978-1-7281-2154-3
会议录名称
页码
1996-2003
会议日期
10-13 June 2019
会议地点
Wellington, New zealand
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Very expensive problems are very common in practical system that one fitness evaluation costs several hours or even days. Surrogate assisted evolutionary algorithms (SAEAs) have been widely used to solve this crucial problem in the past decades. However, most studied SAEAs focus on solving problems with a budget of at least ten times of the dimension of problems which is unacceptable in many very expensive real-world problems. In this paper, we employ Voronoi diagram to boost the performance of SAEAs and propose a novel framework named Voronoi-based efficient surrogate assisted evolutionary algorithm (VESAEA) for very expensive problems, in which the optimization budget, in terms of fitness evaluations, is only 5 times of the problem's dimension. In the proposed framework, the Voronoi diagram divides the whole search space into several subspace and then the local search is operated in some potentially better subspace. Additionally, in order to trade off the exploration and exploitation, the framework involves a global search stage developed by combining leave-one-out cross-validation and radial basis function surrogate model. A performance selector is designed to switch the search dynamically and automatically between the global and local search stages. The empirical results on a variety of benchmark problems demonstrate that the proposed framework significantly outperforms several state-of-art algorithms with extremely limited fitness evaluations. Besides, the efficacy of Voronoi-diagram is furtherly analyzed, and the results show its potential to optimize very expensive problems.
© 2019 IEEE.
关键词
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Engineering ; Mathematical & Computational Biology
WOS类目
Engineering, Electrical & Electronic ; Mathematical & Computational Biology
WOS记录号
WOS:000502087102002
EI入藏号
20193507373958
EI主题词
Budget control ; Computational geometry ; Economic and social effects ; Graphic methods ; Health ; Local search (optimization) ; Radial basis function networks ; Statistical methods
EI分类号
Medicine and Pharmacology:461.6 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5 ; Mathematical Statistics:922.2 ; Social Sciences:971
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8789910
引用统计
被引频次[WOS]:16
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50885
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving Intelligent Systems of Guangdong Province, Southern University of Science and Technology, Shenzhen; 518055, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Tong, Hao,Huang, Changwu,Liu, Jialin,et al. Voronoi-based Efficient Surrogate-assisted Evolutionary Algorithm for Very Expensive Problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:1996-2003.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@CEC.2019.878(644KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tong, Hao]的文章
[Huang, Changwu]的文章
[Liu, Jialin]的文章
百度学术
百度学术中相似的文章
[Tong, Hao]的文章
[Huang, Changwu]的文章
[Liu, Jialin]的文章
必应学术
必应学术中相似的文章
[Tong, Hao]的文章
[Huang, Changwu]的文章
[Liu, Jialin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CEC.2019.8789910.pdf
格式: Adobe PDF
文件名: 10.1109@CEC.2019.8789910.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。