中文版 | English
题名

When Cooperative Co-Evolution Meets Coordinate Descent: Theoretically Deeper Understandings and Practically Better Implementations

作者
通讯作者Shi, Yuhui
DOI
发表日期
2019
ISBN
978-1-7281-2154-3
会议录名称
页码
721-730
会议日期
10-13 June 2019
会议地点
Wellington, New zealand
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Decomposition-based optimizers have shown very promising computational and convergence performance on many large-scale real-parameter optimization problems. Among them, a class of recently proposed cooperative coevolutionary algorithms (CCEAs) and a type of conventional block coordinate descent algorithms (BCDAs) are arguably the two most representative frameworks applied to the minimization of non-differentiable and differentiable objective function, respectively. This paper explores the connections between CCEAs and BCDAs, which can help gain deeper understandings of CCEAs. First, we propose a unified analytical framework for both CCEAs and BCDAs to capture the common game-theoretic nature by combining their respective theoretical advances. Second, many real-world objective functions are non-additively separable, where all decision variables interact with each other in a direct or indirect fashion. However, most of the state-of-the-art decomposition strategies for CCEAs can only capture the simple additive separability and cannot recognize the non-additive separability, but which has been widely studied in the BCDAs context. The performance of CCEAs on such functions is yet to be fully understood since intuitively CCEAs seem to be not suitable for them. We use the proposed framework to confirm and extend CCEAs' applicability to a special class of non-additively separable functions. Finally, based on the proposed framework, we provide two practical suggestions as well as a suite of new test functions to help design practically better CCEAs for large-scale optimization.
© 2019 IEEE.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284]
WOS研究方向
Engineering ; Mathematical & Computational Biology
WOS类目
Engineering, Electrical & Electronic ; Mathematical & Computational Biology
WOS记录号
WOS:000502087100096
EI入藏号
20193507373882
EI主题词
Additives ; Evolutionary algorithms ; Game theory
EI分类号
Chemical Agents and Basic Industrial Chemicals:803 ; Optimization Techniques:921.5 ; Probability Theory:922.1
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790148
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50886
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, Shenzhen, China
2.College of Management, Shenzhen University, Shenzhen, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Duan, Qiqi,Shao, Chang,Qu, Liang,et al. When Cooperative Co-Evolution Meets Coordinate Descent: Theoretically Deeper Understandings and Practically Better Implementations[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:721-730.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Duan, Qiqi]的文章
[Shao, Chang]的文章
[Qu, Liang]的文章
百度学术
百度学术中相似的文章
[Duan, Qiqi]的文章
[Shao, Chang]的文章
[Qu, Liang]的文章
必应学术
必应学术中相似的文章
[Duan, Qiqi]的文章
[Shao, Chang]的文章
[Qu, Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。