题名 | Gradient-free Algorithms for Graph Embedding |
作者 | |
通讯作者 | Shi, Yuhui |
DOI | |
发表日期 | 2019
|
ISBN | 978-1-7281-2154-3
|
会议录名称 | |
页码 | 2746-2752
|
会议日期 | 10-13 June 2019
|
会议地点 | Wellington, New zealand
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Graph-based data are very ubiquitous in many real-world scenarios, and it is usually difficult to mine valuable information from the large scale graphs because of traditional sparse and high-dimension representations of nodes in the graphs. To address this issue, the graph embedding techniques which aim to map the nodes of the graph into a low-dimension dense vector space are proposed. These vectors can act as the features of nodes for many graph analytics tasks. However, most existing graph embedding algorithms highly rely on gradient information, which largely restricts the flexibility and universality of algorithms and easily reaches local optimum. In this paper, we propose a general and flexible gradient-free (e.g. particle swarm optimization and differential evolution) graph embedding algorithmic framework, which introduces how to apply gradient-free algorithms on graph embedding problems. Furthermore, the experiments on three large scale real-world network datasets for nodes classification and nodes multi-label classification tasks show that the gradient-free graph embedding algorithms can obtain promising results. © 2019 IEEE. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284]
|
WOS研究方向 | Engineering
; Mathematical & Computational Biology
|
WOS类目 | Engineering, Electrical & Electronic
; Mathematical & Computational Biology
|
WOS记录号 | WOS:000502087102098
|
EI入藏号 | 20193507373867
|
EI主题词 | Classification (of information)
; Embeddings
; Graphic methods
; Large dataset
; Particle swarm optimization (PSO)
; Vector spaces
|
EI分类号 | Information Theory and Signal Processing:716.1
; Computer Software, Data Handling and Applications:723
; Mathematics:921
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790139 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50887 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Qu, Liang,Shi, Yuhui. Gradient-free Algorithms for Graph Embedding[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:2746-2752.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论