中文版 | English
题名

Gradient-free Algorithms for Graph Embedding

作者
通讯作者Shi, Yuhui
DOI
发表日期
2019
ISBN
978-1-7281-2154-3
会议录名称
页码
2746-2752
会议日期
10-13 June 2019
会议地点
Wellington, New zealand
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Graph-based data are very ubiquitous in many real-world scenarios, and it is usually difficult to mine valuable information from the large scale graphs because of traditional sparse and high-dimension representations of nodes in the graphs. To address this issue, the graph embedding techniques which aim to map the nodes of the graph into a low-dimension dense vector space are proposed. These vectors can act as the features of nodes for many graph analytics tasks. However, most existing graph embedding algorithms highly rely on gradient information, which largely restricts the flexibility and universality of algorithms and easily reaches local optimum. In this paper, we propose a general and flexible gradient-free (e.g. particle swarm optimization and differential evolution) graph embedding algorithmic framework, which introduces how to apply gradient-free algorithms on graph embedding problems. Furthermore, the experiments on three large scale real-world network datasets for nodes classification and nodes multi-label classification tasks show that the gradient-free graph embedding algorithms can obtain promising results.
© 2019 IEEE.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284]
WOS研究方向
Engineering ; Mathematical & Computational Biology
WOS类目
Engineering, Electrical & Electronic ; Mathematical & Computational Biology
WOS记录号
WOS:000502087102098
EI入藏号
20193507373867
EI主题词
Classification (of information) ; Embeddings ; Graphic methods ; Large dataset ; Particle swarm optimization (PSO) ; Vector spaces
EI分类号
Information Theory and Signal Processing:716.1 ; Computer Software, Data Handling and Applications:723 ; Mathematics:921 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
来源库
EV Compendex
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790139
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50887
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Qu, Liang,Shi, Yuhui. Gradient-free Algorithms for Graph Embedding[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:2746-2752.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qu, Liang]的文章
[Shi, Yuhui]的文章
百度学术
百度学术中相似的文章
[Qu, Liang]的文章
[Shi, Yuhui]的文章
必应学术
必应学术中相似的文章
[Qu, Liang]的文章
[Shi, Yuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。