题名 | Brain Storm Optimization Algorithm Based on Improved Clustering Approach Using Orthogonal Experimental Design |
作者 | |
DOI | |
发表日期 | 2019
|
ISBN | 978-1-7281-2154-3
|
会议录名称 | |
页码 | 262-270
|
会议日期 | 10-13 June 2019
|
会议地点 | Wellington, New zealand
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The brain storm optimization (BSO) algorithm is a new and promising swarm intellgience paradigm, inspired from the behaviors of the human process of brainstorming. The noverty of BSO lies in the clustering mechanism where the ideas are clustered into a set of groups and each idea learns from experiences of one inter-cluster or two intra-cluster neighbors. However, this mechanism is inefficient to deal with complex optimiaiton problems. In this paper, we propose an improved BSO algorithm called OSBSO using orthogonal experimental design (OED) strategy, which aims to discover useful search experiences for improving the convergence and solution accurancy. In OSBSO, two new clustering procedures are developed, i.e., orthogonal initialization and orthogonal clustering. The orthogonal initialization aims to improve the uniformity of the initial cluster centers in the objective space instead of the decision space, which can enhance the convergence performance. The orthogonal clustering uses the information between inter- cluster and intra-cluster indviduals to alleviate the evolution stagnation of clusters. Experiments are conducted on a set of the CEC2017 benchmark functions and the results verify the effectivenss and efficiency of OSBSO. © 2019 IEEE. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61503373]
|
WOS研究方向 | Engineering
; Mathematical & Computational Biology
|
WOS类目 | Engineering, Electrical & Electronic
; Mathematical & Computational Biology
|
WOS记录号 | WOS:000502087100036
|
EI入藏号 | 20193507374121
|
EI主题词 | Behavioral research
; Cluster analysis
; Evolutionary algorithms
; Statistics
; Storms
; Swarm intelligence
|
EI分类号 | Precipitation:443.3
; Computer Software, Data Handling and Applications:723
; Information Sources and Analysis:903.1
; Mathematical Statistics:922.2
; Social Sciences:971
|
来源库 | EV Compendex
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8790307 |
引用统计 |
被引频次[WOS]:6
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/50890 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Software College Northeastern University, Shenyang, China 2.School of Computer Science, Shaanxi Normal University, Xi'an, China 3.Computer Science and Engineering College, Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Wang, Rui,Ma, Lianbo,Zhang, Tao,et al. Brain Storm Optimization Algorithm Based on Improved Clustering Approach Using Orthogonal Experimental Design[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:262-270.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论