中文版 | English
题名

Network Pruning for OCT Image Classification

作者
通讯作者Zhang, Yi
DOI
发表日期
2019
会议名称
International Workshop on Ophthalmic Medical Image Analysis
ISSN
16113349
会议录名称
卷号
11855 LNCS
页码
121-129
会议日期
2019
会议地点
Shenzhen, China
出版者
摘要

Convolutional neural network (CNN) has expanded rapidly, and has been widely used in medical image classification. The large number of parameters in a neural network makes CNN models computationally expensive. This leads to slow inference speed, especially for 3D data such as optical coherence tomography (OCT) for retinal images. A volume OCT scan of retina often contains hundreds of 2D images which needs to be analyzed sequentially in a local computer with limited computational resources. We introduce network pruning to OCT images classification and propose an algorithm to prune networks. We compress the popular classification models, such as ResNet and VGG. For example, within 1% accuracy loss, we compress ResNet-18 from 44.8 MB to 69 KB and VGG-16 from 537.1 MB to 194 KB. These pruned models are much smaller and easier to deploy on the OCT devices. As for the inference speed, the pruned models are 10 to 20 times faster than original models for ResNet and VGG in CPU.
© Springer Nature Switzerland AG 2019.

学校署名
其他
语种
英语
收录类别
资助项目
[2016QNRC001] ; National Natural Science Foundation of China[61601029]
EI入藏号
20194807769143
EI主题词
Classification (Of Information) ; Computer Aided Analysis ; Image Analysis ; Medical Imaging ; Neural Networks ; Optical Tomography
EI分类号
Information Theory And Signal Processing:716.1 ; Computer Applications:723.5 ; Optical Devices And Systems:741.3 ; Imaging Techniques:746
来源库
EV Compendex
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/50925
专题工学院_计算机科学与工程系
作者单位
1.College of Computer Science, Sichuan University, Chengdu, China
2.Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Beijing, China
3.College of Electrical Engineering, Sichuan University, Chengdu, China
4.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Yang, Bing,Zhang, Yi,Cheng, Jun,et al. Network Pruning for OCT Image Classification[C]:Springer,2019:121-129.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Network Pruning for (1029KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Bing]的文章
[Zhang, Yi]的文章
[Cheng, Jun]的文章
百度学术
百度学术中相似的文章
[Yang, Bing]的文章
[Zhang, Yi]的文章
[Cheng, Jun]的文章
必应学术
必应学术中相似的文章
[Yang, Bing]的文章
[Zhang, Yi]的文章
[Cheng, Jun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。